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• Marco Baldi, Università Politecnica delle Marche, Ancona, Italy
• Alessandro Barenghi, Politecnico di Milano, Milano, Italy
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Chapter 1

Complete written specification

LEDApkc is a public-key cryptosystem (PKC) built from the McEliece cryptosystem based on
linear error-correcting codes. In particular, LEDApkc exploits the advantages of relying on quasi-
cyclic low-density parity-check (QC-LDPC) codes providing high decoding speeds and compact
keypairs [4, 5], with three main innovations:

i. Reaction attacks of the type presented in [15] are taken into account and a secure lifetime for
a keypair is estimated.

ii. A new decoding algorithm is designed: it provides faster decoding than the regular bit flipping
(BF) decoding procedure, saves a computationally demanding matrix inverse computation,
and allows a reduction in the required private key storage.

iii. A fully fledged conversion of the type described in [22,23] is implemented to achieve indistin-
guishability under adaptive chosen ciphertext attack (IND-CCA2).

The main known attacks against this system are those applicable against QC-LDPC code-based
cryptosystems [4], which have been studied for ten years since the first proposal appeared in [3],
plus statistical attacks recently introduced in [15, 19]. We carefully analyze their capabilities and
provide parametrization for the LEDApkc system to provide the required security guarantees taking
into account the computational cost reduction following from the use of a quantum computer in
the solution of the underlying computationally hard problems.

1.1 Preliminaries

We now provide a set of background notions and nomenclature concerning binary error correcting
codes, and in particular Low-Density Parity-Check codes, which are the foundational constructs of
LEDApkc.
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1.1.1 Linear error correcting codes

Binary error correcting codes rely on a redundant representation of information in the form of binary
string to be able to detect and correct accidental bit errors which may happen during transmission
or storage. We will employ binary codes acting on a finite binary sequence at once, known as the
information word, which are known as block codes. We will refer to them from now on simply as
binary codes.
In this setting, let F2 be the binary finite field with the addition and multiplication operations
which corresponds to the usual exclusive-or and logical product between two Boolean values. Let
Fk2 denote the k-dimensional vector space defined on F2. A binary code, denoted as C (n, k), is
defined as a bijective map C (n, k) : Fk2 → Fn2 , n, k ∈ N, 0 < k < n, between any binary k-tuple
(i.e., an information word) and a binary n-tuple (denoted as codeword). The value n is known as
the length of the code, while k is denoted as its dimension.
Encoding through C (n, k) means converting an information word u ∈ Fk2 into its corresponding
codeword c ∈ Fk2. The decoding process, instead, given a codeword ĉ corrupted by an error vector
e ∈ Fk2 with Hamming weight t > 0 (ĉ = c + e), recovers both the value of the information word
u and the value of the error vector e. A code is said to be t-error correcting if, for any value of e,
given c̃ there is a decoding procedure to retrieve both the error vector e and the original information
word u.

Definition 1.1.1 (Linear Code) The code C (n, k) is linear if and only if the set of its 2k code-
words is a k-dimensional subspace of the vector space Fn2 .

A property of linear block codes that follows from Definition 1.1.1 is that the sum modulo 2, i.e.,
the component wise exclusive-or, of two codewords is also a codeword.

Definition 1.1.2 (Minimum distance) Given a linear binary code C (n, k), the minimum dis-
tance of C (n, k) is the minimum Hamming distance among all the ones which can be computed
between a pair of its codewords.

If the code is linear, its minimum distance coincides with the minimum Hamming weight of its
nonzero codewords. Given C (n, k), a linear error correcting code, and Γ ⊂ Fn2 the vector subspace
containing its 2k codewords, it is possible to represent it choosing k linearly independent codewords
{g0, g1, . . . gk−1} ∈ Fn2 to form a basis of Γ. Any codeword c = [c0, c1, . . . , cn−1] can be expressed as
a linear combination of the vectors of the basis

c = u0g0 + u1g1 + . . .+ uk−1gk−1 (1.1)

where the binary coefficients ui can be thought as the element of an information vector u =
[u0, u1, . . . , uk−1], which the code maps into c. Equation (1.1) can be rewritten as c = uG, where
G is a k × n binary matrix known as the generator matrix of the code C (n, k), i.e.:

G =


g0

g1
...

gk−1

 .
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Since any set of k linearly independent codewords can be used to form G, a code can be represented
by different generator matrices. Among the possible representations, it is always possible for a linear
code to derive a representation known as systematic.

Definition 1.1.3 (Systematic Code) A linear error correcting code C (n, k) is said to be in a
systematic form, or systematic in short, if each one of its codewords contains the information vector
it is associated to.

A conventional way to express a systematic code is the one where each n-bit codeword, c, is obtained
by appending r = n− k redundancy bits (ck, ck+1, . . . , cn−1) to its corresponding k-bit information
word (i.e., c0, c1, . . . , ck−1, with ci = ui, 0 ≤ i < k): c = [u0, u1, . . . , uk−1|ck, ck+1, . . . , cn−1]. It
follows that the associated k × n generator matrix G can be written as G = [Ik|P ], where Ik
denotes the k × k identity matrix and P is a k × r binary matrix.
Let us consider the set of all n-bit vectors in Fn2 that are orthogonal to any codeword of the code
subspace Γ, known as its orthogonal complement Γ⊥. Its dimension is dim

(
Γ⊥
)

= n − dim (Γ) =
n− k = r. A basis of Γ⊥ is readily obtained choosing r linearly independent vector in Γ⊥ as

H =


h0

h1
...

hr−1


The r × n matrix H is known as a parity-check matrix of the code C (n, k), while, for any n-bit
vector x ∈ Fn2 , the r × 1 vector s = HxT is known as the syndrome of x through H. Given that
H is a basis of Γ⊥, every codeword c ∈ Γ satisfies the equality HcT = 0r×1 where 0r×1 is the r × 1
zero vector, i.e., a codeword belonging to C(n, k) has a null syndrome through H.

It can be shown that the generator matrix G and the parity-check matrix H are two equivalent
descriptions of a linear code. Indeed, we have that HcT = HGTuT = 0r×1, ∀u ∈ Fk2, yielding in
turn that HGT = 0r×k. Exploiting the aforementioned relation, it is possible to derive H from
G and vice-versa. Consider, for the sake of clarity, the case of a systematic code C(n, k) with
G = [Ik|P ]. It is possible to obtain the corresponding parity matrix H as

[
P T |Ir

]
, where T denotes

transposition, which satisfies HGT = P T + P T = 0r×k. Finally, considering a generic parity-check
matrix H = [A|B], with A an r × k matrix and B an r × r non-singular matrix, a systematic

generator matrix of the corresponding code is computed as G =
[
Ik|
(
B−1A

)T ]
.

1.1.2 Quasi-cyclic codes and circulant matrices

A quasi-cyclic (QC) code is defined as a linear block code C(n, k) having information word size
k = pk0 and codeword size n = pn0, where n0 is denoted as basic block length of the code and each
cyclic shift of a codeword by n0 symbols results in another valid codeword [39].
LEDApkc hinges on a QC code C(pn0, pk0) having the generator and parity-check matrices com-
posed by p× p circulant sub-matrices (blocks).
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A v × v circulant matrix A has the following form

A =


a0 a1 a2 · · · av−1

av−1 a0 a1 · · · av−2

av−2 av−1 a0 · · · av−3
...

...
...

. . .
...

a1 a2 a3 · · · a0

 . (1.2)

According to its definition, any circulant matrix has a constant row and column weight, i.e., is
regular, since all its rows and columns are cyclic shifts of the first row and column, respectively.

The set of v × v binary circulant matrices forms an algebraic ring under the standard operations
of modulo-2 matrix addition and multiplication. The zero element is the all-zero matrix, and the
identity element is the v × v identity matrix. The algebra of the polynomial ring F2[x]/〈xv + 1〉 is
isomorphic to the ring of v × v circulant matrices over F2 with the following map

A↔ a (x) =
v−1∑
i=0

aix
i. (1.3)

According to eq. (1.3), any binary circulant matrix is associated to a polynomial in the variable x
having coefficients over F2 which coincide with the entries in the first row of the matrix

a (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ av−1x
v−1 (1.4)

In addition, according to eq. (1.3), the all-zero circulant matrix corresponds to the null polynomial
and the identity matrix to the unitary polynomial.

The ring of polynomials F2[x]/〈xv + 1〉 includes elements that are zero divisors: such elements
are mapped onto singular circulant matrices over F2. Avoiding such matrices is important in the
computation of the LEDApkc primitives, as computing the inverse of v × v circulant matrices is
required. However, a proper selection of the size of a circulant matrix v, allows to easily generate
invertible instances of it as described in the following.

1.1.3 Polynomial inversion in a finite field

To provide efficient execution for the LEDApkc primitives, it is crucial to be able to efficiently
check invertibility of a binary circulant matrix, and to generate a non-singular circulant matrix
efficiently. To this end, we exploit the isomorphism (1.3) between p × p binary circulant matrices
and polynomials in F2[x]/〈xp + 1〉, turning the problem into providing an efficient criterion for
the invertibility of an element of F2[x]/〈xp + 1〉 and describing an efficient way to generate such
invertible polynomials. In the following, we recall some facts from finite field theory, and we derive
a necessary and sufficient condition for the invertibility of an element of F2[x]/〈xp + 1〉, provided p
is chosen according to the described criterion. Let Fqm be a finite field, with q a prime power and
m a positive integer; given an element α ∈ Fqm , the following propositions hold [40]:

(i) The minimal polynomial of α with respect to Fq, i.e., the nonzero monic polynomial f(x) ∈
Fq[x] of the least degree such that f(α) = 0, always exists, it is unique, and it is also irreducible
over Fq.
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(ii) If a monic irreducible polynomial g(x) ∈ Fq[x] has α ∈ Fqm as a root, then it is the minimal
polynomial of α with respect to Fq.

Definition 1.1.4 Let n be a positive integer and q a prime power such that gcd(n, q) = 1. A
cyclotomic coset of q mod n containing the value a ∈ Zn is defined as

Ca = {aqj mod n : j = 0, 1, . . .}.

A subset {a1, . . . , as} ⊆ Zn is named as a complete set of representatives of cyclotomic cosets of

q mod n if ∀ i 6= j Cai ∩ Caj = ∅ and
s⋃
j

Caj = Zn.

It is worth noting that the previous definition allows to easily infer that two cyclotomic cosets are
either equal or disjoint. Indeed, given two cyclotomic cosets Ca1 and Ca2 , with a1 6= a2 mod n, if
Ca1 ∩Ca2 6= ∅, two positive integers j and k such that a1q

j = a2q
k mod n should exist. Assuming

(without loss of generality) that k ≥ j, the condition gcd(n, q) = 1 would ensure the existence of the
multiplicative inverse of q and consequentially that a1 = a2q

k−j mod n, which in turn would imply
that the cyclotomic coset including a1 is a subset of the coset including a2, i.e., Ca1 ⊆ Ca2 . However,
as the previous equality can be rewritten as a2 = a1(q−1)k−j mod n, it would also imply Ca2 ⊆ Ca1 ,
leading to conclude that a1 = a2 mod n, which is a contradiction of the initial assumption about
them being different.

Two notable theorems that make use of the cyclotomic coset definition to determine the minimal
polynomials of every element in a finite field can be stated as follows [40].

Theorem 1.1.1 Let α be a primitive element of Fqm , the minimal polynomial of αi in Fq[x] is

g(i)(x) =
∏
j∈Ci

(x− αj), where Ci is the unique cyclotomic coset of q modulo qm − 1 containing i.

Theorem 1.1.2 Given a positive integer n and a prime power q, with gcd(n, q) = 1, let m be
a positive integer such that n | (qm − 1). Let α be a primitive element of Fqm and let g(i)(x) ∈
Fq[x] be the minimal polynomial of αi ∈ Fqm . Denoting as {a1, . . . , as} ⊆ Zn a complete set of
representatives of cyclotomic cosets of q modulo n, the polynomial xn − 1 ∈ Fq[x] can be factored
as the product of monic irreducible polynomials over Fq:

xn − 1 =
s∏
i=1

g

(
(qm−1)ai

n

)
(x).

Corollary 1.1.1 Given a positive integer n and a prime power q, with gcd(n, q) = 1, the number
of monic irreducible factors of xn − 1 ∈ Fq[x] is equal to the number of cyclotomic cosets of q
modulo n.

From the previous propositions on the properties of finite fields, it is possible to derive the following
results:

Corollary 1.1.2 Given an odd prime number p, if 2 is a primitive element in the finite field
Zp then the irreducible (non trivial) polynomials being a factor of xp − 1 ∈ F2[x] are x + 1 and
Φ(x) = xp−1 + xp−2 + · · ·+ x+ 1.
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Proof. Considering the ring of polynomials with binary coefficients F2[x] and picking a positive
integer n as an odd prime number (i.e., n = p), Corollary 1.1.1 ensures that the number of factors
of xp − 1 ∈ F2[x] equals the number of cyclotomic cosets of 2 modulo p.
If 2 is a primitive element of Zp, its order, ordp(2), is equal to the order of the (cyclic) multiplicative
group of the field, i.e., ordp(2) = | (Zp \ {0}, ·) | = p − 1 thus, the said cyclotomic cosets can be
listed as: C0 = {0 · 2j mod p : j = 0, 1, . . . } = {0} and C1 = {1 · 2j mod p : j = 0, 1, . . . } = Zp \ {0}.
The polynomial xp − 1 ∈ F2[x] admits α = 1 as a root, therefore its two (non trivial) factors can
be listed as: x− 1 and xp−1

x−1 = xp−1 + xp−2 + · · ·+ x+ 1.

Theorem 1.1.3 (Invertible elements in F2[x]/〈xp + 1〉) Let p be a prime number such that
ordp(2) = p− 1. Let g(x) be a binary polynomial in F2[x]/〈xp + 1〉, with deg(g(x)) > 0.
g(x) has a multiplicative inverse in F2[x]/〈xp + 1〉 if and only if it contains an odd number of terms
and g(x) 6= Φ(x), with Φ(x) = xp−1 + xp−2+ · · ·+ x+ 1.

Proof. If g(x) ∈ F2[x]/〈xp + 1〉 contains an odd number of terms and g(x) 6= Φ(x), to prove it is
invertible modulo xp + 1 we need to consider that gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)).
It is easy to observe that x + 1 does not divide g(x), i.e., (x + 1) - g(x), as g(1) = 1, thus they
are coprime. Considering Φ(x), we know by hypothesis that ordp(2) = p − 1, therefore Φ(x) is
irreducible over F2[x] (see Corollary 1.1.2), which excludes that g(x) | Φ(x).
To the end of proving that g(x) and Φ(x) are coprime, it has to hold that Φ(x) - g(x). To this end
assume, by contradiction, that g(x)h(x) = Φ(x) for a proper choice of h(x) ∈ F2[x]. The previous
equality entails that deg(g(x)) + deg(h(x)) = p− 1, while deg(g(x)) ≤ p− 1, which in turn leaves
deg(h(x)) = 0 as the only option, leading to conclude h(x) = 0 or h(x) = 1. In case h(x) = 0,
the equality g(x) · 0 = xp−1 + xp−2 + · · · + x + 1 is false, while in case h(x) = 1, the equality
g(x) · 1 = Φ(x) contradicts the hypothesis. Since we proved that g(x) - Φ(x) and Φ(x) - g(x),
g(x) 6= Φ(x) by hypothesis, we can infer that they are coprime.
Finally, being gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)) = 1 we conclude that g(x) is invertible.

To prove the other implication of the theorem, if g(x) ∈ F2[x]/〈xp + 1〉 with deg(g(x)) > 0, is
invertible we need to derive that g(x) must have an odd number of terms and be different from
Φ(x). Being g(x) invertible, this means that gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)) = 1, which
in turn means that gcd(g(x), x+ 1) = 1 and gcd(g(x),Φ(x)) = 1 that guarantees that g(x) 6= Φ(x)
and that g(1) = 1. Willing to prove that g(x) must have an odd number of terms, assume, by
contradiction, it has an even number of terms. Regardless of which terms are contained in g(x)
this means that it admits 1 as a root, which contradicts the premise.

1.1.4 Quasi-cyclic low-density parity-check codes and their efficient decoding

A low-density parity-check (LDPC) code C (n, k) is a special type of linear block code characterized
by a sparse parity-check matrix H. In particular, the Hamming weight of a column of H, denoted
as dv, is much smaller than its column length r and increases sub-linearly with it. In terms of error
correction capability, LDPC codes having a non-constant weight for either the rows or the columns
of H, hence known as irregular LDPC codes, were proven to approach the channel capacity [26].
Considering the parity-check matrix H of an LDPC code as the incidence matrix of a graph, such
a graph is known as Tanner graph, and it has been shown that the presence of a small number of
short cycles in it is beneficial to the error correction performance of the code.

The peculiar form of LDPC codes allows to devise an efficient decoding procedure, provided their
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parity-check matrix H is known, via algorithms known as BF decoders [16]. Indeed, BF algorithms
perform decoding with a fixed-point procedure which exploits the form of H to iteratively deduce
which bits of an error-affected codeword should be flipped in order to obtain a zero-valued syndrome
for it. If the fixed-point procedure converges within a desired amount of iterations to a zero-valued
syndrome, the decoding action is deemed successful.

The main observation of the BF decoders starts from considering the parity-check matrix H as the
description of a set of r equations in the codeword bits yielding the syndrome bits as their results.
Such equations are known as parity check equations, or parity checks, in short. In this context, the
one-valued coefficients of the i-th column of a parity matrix H can be thought of as the indicators
of which parity checks of the code are involving the i-th bit of the received codeword. The result of
each one of the said parity checks is a bit in the syndrome, hence a zero-valued syndrome indicates
a set of successful parity checks, and thus a correct codeword. The convergence of the fixed-point
decoder is influenced by the number of parity checks in which each codeword element is involved:
in particular, being involved in a small number of parity checks speeds up the convergence.

An LDPC code may also be a QC code, expressed with a QC parity-check or generator matrix,
hence being named a QC-LDPC code, which is indeed the case of the codes employed in LEDApkc.

An efficient BF decoding procedure for QC-LDPC codes can be devised relying on the number of
unsatisfied parity checks to which a codeword bit concurs as an estimate of it being affected by an
error. We describe such a procedure in Algorithm 1.1.1, where the sparse and QC nature of the
matrix H is explicitly exploited. To this end H is represented as r0×n0 sparse p×p circulant blocks,
and only the positions of the first column of each block are memorized in Hsparse. Algorithm 1.1.1
receives, alongside Hsparse, the error-affected codeword to be corrected x, its syndrome computed
as s = HxT , and performs the fixed-point decoding procedure for a maximum of imax iterations.
The algorithm outputs its best estimate for the correct codeword c and a boolean variable decodeOk
reporting the success of the decoding procedure. The procedure iterates at fixed-point (loop at
lines 4–18) the decoding procedure, which starts by counting how many unsatisfied parity checks
a codeword bit is involved into (lines 5–10). Such a value is obtained considering which are the
asserted bits in a given column of H, taking care of accounting for its sparse representation, and
the cyclic nature of its blocks (line 8). Whenever a bit in the i-th column and assertedHbitPos-
th row of H is set, it is pointing to the fact that the i-th bit of the codeword is involved in the
assertedHbitPos-th parity-check equation. Thus, if the assertedHbitPos-th bit of the syndrome
is unsatisfied, i.e., equal to 1, the number of unsatisfied parity checks of the i-th bit is incremented
(lines 9–10). Once the computation of the number of unsatisfied parity checks per codeword bit
is completed, a decision must be taken on which of them are to be flipped, as they are deemed
error affected. A possible criterion, yielding very good error correction performances at the cost of
a lower computational efficiency is to flip all the bits which are involved in the maximum number
of unsatisfied parity checks, computed at line 11. Thus, the procedure toggles the values of all
the codeword bits for which the number of unsatisfied parity checks matches the maximum one
(lines 12–14). Once this step is completed, the values of the parity checks should be recomputed
according to the new value of the codeword. While this can be accomplished by pre-multiplying
the transposed codeword by H, it is more efficient to exploit the knowledge of which bits of the
codeword were toggled to change only the parity-check values in the syndrome affected by such
toggles. Lines 15–17 of Algorithm 1.1.1 update the syndrome according to the aforementioned
procedure, i.e., for a given i-th codeword bit being toggled, all the syndrome values corresponding
to the positions of the asserted coefficients in the i-th column of H are also toggled. Once either the
decoding procedure has reached its intended fixed-point, i.e., the syndrome is a zero-filled vector,
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Algorithm 1.1.1: BF decoding

Input: x: QC-LDPC error-affected codeword as a 1× pn0 binary vector.
s: QC-LDPC syndrome. It is a pr0 × 1 binary vector obtained as s = HxT .

Hsparse: sparse version of the parity-check matrix H, represented as an
dv × n0 integer matrix containing for each of its n0 columns, the positions in
{0, 1, . . . , pr0 − 1} of the asserted binary coefficients in the first column of the
sequence of r0 circulant block matrices (each of which with size p× p).

Output: c: error-free 1× pn0 codeword
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding failure

1 codeword← x // bitvector with size pn0

2 syndrome← s // bitvector with size pr0

3 iterationCounter← 0 // scalar variable denoting the number of iterations

4 repeat
5 unsatParityChecks← 01×pr0 // counters of unsatisfied parity checks

6 for i = 0 to pn0 − 1 do
7 for j = 0 to dv − 1 do

8 assertedHbitPosition← (i+ Hsparse[j][i]) mod p+ p ·
⌊
Hsparse[j][i] div p

⌋
9 if syndrome[assertedHbitPosition] = 1 then

10 unsatParityChecks[i]← 1 + unsatParityChecks[i]

11 maxUPC← max(unsatParityChecks)

12 for i = 0 to pn0 − 1 do
13 if unsatParityChecks[i] = maxUPC then
14 BitToggle(codeword[i]) // codeword update

15 for j = 0 to dv − 1 do

16 assertedHbitPos← (i+ Hsparse[j][i]) mod p+ p ·
⌊
Hsparse[j][i] div p

⌋
17 BitToggle(syndrome[assertedHbitPos])

18 until syndrome 6= 01×pr0 and iter < imax

19 if syndrome = 01×pr0 then
20 return codeword, true
21 return codeword, false

or the maximum number of iterations has been reached, Algorithm 1.1.1 returns its best estimate
for the corrected codeword, together with the outcome of the decoding procedure (lines 19–21).

1.1.5 McEliece cryptosystem

The McEliece cryptosystem is a public-key cryptosystem proposed by Robert McEliece in 1978 [28]
and exploiting the hardness of the problem of decoding a random-like linear block code. In the
original proposal, the McEliece cryptosystem used irreducible Goppa codes as secret codes, but
its construction can be generalized to other families of codes. The main stages of the McEliece
cryptosystem are described next.
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Key generation. In order to receive encrypted messages, Bob randomly chooses a secret binary
linear block code C(n, k), with codeword length n, information word length k, and generation matrix
Gk×n able to correct t or less bit errors. The k × n binary generator matrix G of the secret code
(allowing efficient decoding) is used as part of the private key.
Bob also chooses, as part of the private key, other two secret matrices: a dense k × k non-singular
binary scrambling matrix S, and an n× n permutation matrix P .
Bob’s public key is then computed as

G′ = SGP (1.5)

which is the generator matrix of a public code being permutation-equivalent to the secret one. Such
a code has the same size and correction capability of the private code.

Encryption. Let us suppose that Alice wishes to send a secret 1× k binary string u to Bob. She
gathers Bob’s public key G′ from a public repository and computes the encrypted version of u as

x = uG′ + e = c+ e (1.6)

where e is a random binary 1× n error vector with length n and weight t, generated by Alice.

Decryption. In order to decrypt the 1× n binary vector x, obtained as in (1.6), Bob computes

x′ = xP−1

where P−1 = P T is the inverse of the permutation matrix P . Based on eq. (1.5) and eq. (1.6), we
have:

x′ = uSG+ eP−1

Hence, x′ is a codeword of the secret code affected by the error vector e′ = eP−1 of weight t. So
Bob can correct the error vector e′ and recover u′ = uS, from which u is then obtained through
multiplication by S−1.

In the original McEliece cryptosystem, algebraic code families (namely, Goppa codes) provided
with bounded-distance decoders were used. In such a case, since the number of errors correctable
by the secret code is t, it is guaranteed that Bob is able to correct e′, and hence the Decryption
Failure Rate (DFR) is zero.

It is also worth noticing that the original McEliece cryptosystem only provides indistinguishability
under chosen plaintext attack (IND-CPA). Suitable conversions of the cryptosystem must be
exploited in order to achieve IND-CCA2. When these conversions are used, some constraints on
the public code can be relaxed. For example, in such a case the private and the public codes may
even coincide, thus avoiding the use of S and P , on condition that the public representation of the
code does not allow efficient decoding.

1.2 The LEDApkc cryptosystem

The LEDApkc cryptosystem is derived from the McEliece cryptosystem with the following main
differences:
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• Non-algebraic QC-LDPC codes are used as private codes. In particular, LEDApkc hinges on
a family of QC-LDPC codes, C(n, k) with n = pn0, k = p(n0 − 1), having a (small) basic
block length n0, and a single p × p redundancy block (i.e., r = n − k = pr0 = p, r0 = 1) in
each codeword, where p is an odd prime integer [1, 2].

• The public code is neither coincident with nor equivalent to the private code.

• Suitably designed iterative non-bounded-distance decoding algorithms are used.

The motivation of using QC-LDPC codes as private codes is in the fact that these codes are known
to achieve important reductions in the public key size when used in this context [1, 29]. However,
when LDPC codes are used as private codes, the public code cannot be either coincident with or
equivalent to the private code. Otherwise, an attacker could search for low weight codewords in
the dual of the public code and find a sparse parity-check matrix of the private code which allows
efficient decoding.
For this reason, following [1], LEDApkc uses a transformation matrix Q that hides the sparse parity-
check matrix H of the private code into a denser parity-check matrix L = HQ of the public code.
This also affects the error vector that must be corrected during decryption, which is obtained from
the error vector used during encryption through multiplication by Q. However, efficient iterative
decoding algorithms are proposed that exploit the knowledge of Q to achieve very good performance
in terms of speed and decoding failure rate (DFR).
In fact, a well-known feature of LDPC coding is that the decoding radius of iterative decoders
cannot be estimated in a deterministic way, therefore some residual DFR must be tolerated, and it
must be estimated heuristically through Montecarlo simulations. This is done for all the proposed
instances of LEDApkc in order to guarantee that they achieve a sufficiently low DFR.
To achieve IND-CCA2, we adopt a system conversion according to [22,23], as explained next.

1.2.1 Description of the LEDApkc primitives

Key generation.v Consider a QC-LDPC code C(n, k) having n = pn0, k = p(n0 − 1) and
consequentially a number of redundancy symbols r = n− k = pr0, with r0 = 1.
Both private and public keys of the proposed primitive are formed by binary matrices, each of
which composed of p× p circulant blocks.

Secret key. The secret key is defined as a pr0×pn0 parity-check matrix H (made of r0×n0, p×p
circulant blocks), and by a pn0 × pn0 transformation matrix Q (made of n0 × n0, p × p circulant
blocks). The number of asserted bits in each row/column of any circulant block (a.k.a. the weight
of the block) of matrix H is denoted as dv and its value ranges from 15 to 25. The sequence of
values denoting the number asserted bits in each row/column of the first n0 circulant blocks in Q
is denoted as m = [m0,m1, . . . ,mn0−1], where each value mi, 0 ≤ i ≤ n0, ranges from 1 to 10.

The private key generation process starts generating randomly the positions of the dv asserted bits
in the first row a sequence of 1× n0, p× p circulant blocks Hi, 0 ≤ i ≤ n0 − 1. Subsequently, the
parity-check matrix H is defined as the concatenation of these block matrices, as follows

H = [H0|H1|H2| . . . |Hn0−1] (1.7)
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After the parity-check matrix has been generated, the private key generation process continues
through picking the n2

0 sparse circulant blocks of the transformation matrix Q (Qi,j , 0 ≤ i, j ≤
n0 − 1) at random. The matrix Q can be written as follows:

Q =


Q0,0 Q0,1 . . . Q0,n0−1

Q1,0 Q1,1 . . . Q1,n0−1
...

...
. . .

...
Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 (1.8)

The number of asserted bits in each row/column of the circulant blocks in Q is fixed according to
values of the following matrix of weights

w(Q) =


m0 m1 . . . mn0−1

mn0−1 m0 . . . mn0−2
...

...
. . .

...
m1 mn0−1 . . . m0


where the sum of the values in each row/column is constant and equal to m =

∑n0−1
i=0 mi.

The choice of the weights m = [m0,m1, · · · ,mn0−1] is very important since, as we will prove in the
following theorem, it decides whether Q is singular or not. In the following, we denote by Π {·} the
permanent of a matrix, and with w (·) the weight of a polynomial, i.e., the number of its coefficients
that are nonzero.

Theorem 1.2.1 Let p > 2 be a prime number such that 2 is a generator of the multiplicative
group of integers modulo p (i.e., ordp(2) = p− 1), and let Q be an n0×n0, n0 > 1, matrix of p× p
circulant blocks. If Π {w(Q)} is odd and Π {w(Q)} < p, then Q is non-singular.

Proof. Since each block Qi,j , 0 ≤ i, j ≤ n0 − 1 in Q is isomorphic to a polynomial qij(x) ∈
F2[x]/〈xp+1〉, the determinant of the matrix Q can also be put in one/to/one correspondence with
an element of F2[x]/〈xp + 1〉. Let us denote by d(x) the polynomial associated to the determinant.
If the inverse of d(x) exists, then Q is non-singular. According to Section 1.1.3, showing that
d(x) has odd weight and d(x) 6= Φ(x) = xp−1 + xp−2 + · · · + 1 is enough to guarantee that it is
invertible. In general, when we are considering two polynomials a(x) and b(x), with w (a(x)) = wa
and w (b(x)) = wb, the following statements hold:

i. w (a(x)b(x)) = wawb − 2c1, where c1 is the number of cancellations of pairs of monomials
with the same exponent resulting from multiplication;

ii. w (a(x) + b(x)) = wa + wb − 2c2, where c2 is the number of cancellations due to monomials
with the same exponent appearing in both polynomials.

The determinant d(x) is obtained through multiplications and sums of the elements qij(x) and, in
case of no cancellations, has weight equal to Π {w(Q)}. If some cancellations occur, considering
Statement i) and Statement ii) above, we have that w (d(x)) = Π {w(Q)}−2c, where c is the overall
number of cancellations. So, even when cancellations occur, d(x) has odd weight only if Π {w(Q)}
is odd. In addition, the condition Π {w(Q)} < p guarantees that d(x) 6= Φ(x), as w (Φ(x)) = p.

With this result, we can guarantee that, when the sequence m is properly chosen, the matrix Q is
always non-singular. As we will discuss in the following, a non-singular matrix Q is necessary for
key generation to be successful.
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Definition 1.2.1 The secret key (SK) of LEDApkc is defined as the pair of p× p block circulant
binary matrices {H,Q}, composed by 1× n0 blocks and n0 × n0 blocks, respectively.

Since both H and Q are formed by sparse circulant blocks, it is convenient to represent each of
them through the indexes of the symbols 1 in its first row. Each index of this type requires dlog2(p)e
bits to be stored. If we consider that the circulant blocks in any block row of Q have overall weight
m =

∑n0−1
i=0 mi, then the size of SK in bits amounts to

SSK = n0 (dv +m) dlog2(p)e (1.9)

In practice, the secret matrices are generated through a deterministic random bit generator (DRBG),
seeded with a bit string extracted from a true random number generator (TRNG). In this case,
to obtain H and Q it is sufficient to know the TRNG extracted seed of the DRBG that has been
used to generate the positions of their non-null coefficients. This approach allows reducing the size
of the secret key to the minimum required, as it is assumed that the TRNG output cannot be
further compressed. The entity of the reduction depends on the values of the parameters involved
in eq. (1.9).

Public key. Starting from H and Q, the following binary matrices are computed. First of all,
the matrix L is obtained as

L = HQ = [L0|L1|L2| . . . |Ln0−1] (1.10)

If both dv (the weight of each row/column of H) and m =
∑n0−1

i=0 (the sum of the weights of each
row/column in the first n0 circulant blocks in Q, previously denoted as m = [m0,m1, . . . ,mn0−1])
are odd, then Ln0−1 has full-rank. In fact, Ln0−1 =

∑n0−1
i=0 HiQi,n0−1 and has weight equal to

mdv − 2c (where c is the number of cancellations occurred in the product). If mdv is odd and
mdv < p, Ln0−1 is non-singular according to Section 1.1.3.

After the computation of the multiplicative inverse of Ln0 , the following matrix is computed

M = L−1
n0−1L = [M0|M1|M2| . . . |Mn0−2|Ip] = [Ml|Ip]

where Ip denotes the p× p identity matrix.

Definition 1.2.2 The public key (PK) of LEDApkc is defined as the concatenation of n0−1, p×p
block circulant matrices as follows: Ml = [M0|M1 |M2| . . . |Mn0−2]

From an implementation point of view, as the circulant blocks forming Ml are dense, it is convenient
to store them as binary polynomials in F2[x]/〈xp + 1〉. The bitsize of the PK is as follows:

SPK = (n0 − 1) p (1.11)

Encryption and decryption transformations of LEDApkc. The encryption and decryp-
tion transformations of LEDApkc are designed following the description of the previously shown
McEliece encryption and decryption functions employing the mentioned family of QC-LDPC codes,
with a systematic generation matrix G′. The systematic form of the generation matrix G′ would
easily allow any observer to recover the information word embedded in any encrypted message,
without recovering the private key of the cipher. However, it is well-known that if the McEliece
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encryption transformation is secured against adaptive chosen-ciphertext attacks (CCA2), through
applying proper IND-CCA2-conversion schemes, then the confidentiality of the information word
as well as the security of the private key remain guaranteed by the hardness of the NP-hard general
decoding problem even when a systematic generator matrix is employed. The conversion scheme
chosen to design the LEDApkc primitives is the γ-conversion scheme proposed by Kobara and Imai
in [23]. In the following, we describe the basic encryption and decryption transformations and,
subsequently, the mechanisms of the γ-conversion scheme which allow us to obtain a IND-CCA2
version of the LEDApkc primitives.

Encryption function. Given the (n0− 1), p× p circulant blocks of a public key Ml = [M0|M1

|M2| . . . |Mn0−2], the pk0 × pn0 systematic generation matrix employed in the LEDApkc primitive
is composed as G′ =

[
Ik|MT

l

]
, where Ik denotes a k × k identity matrix, while T denotes the

transposition operation.
Given an information word u as a 1 × p(n0 − 1) binary vector, the sender computes the 1 × pn0

binary vector corresponding to the encrypted message x as follows:

x = uG′ + e = u
[
Ik|MT

l

]
+ e (1.12)

where e is a 1 × pn0 random binary error vector and Hamming weight t, where t is the system
parameter denoting the error correction capability of the QC-LDPC code.

Decryption function. Given the 1× pn0 binary vector representing an encrypted message x,
to recover both the binary 1× pk0 information word u, and the binary 1× pn0 error vector e, the
receiver computes the binary p× 1 vector of the message syndrome employing the secret matrices
H and Q included in its private key SK, as follows:

sT = (HQ)xT (1.13)

It is worth noting that for the value of the syndrome sT the following chain of equalities holds:

sT = (HQ)xT = (HQ)(uG′ + e)T = (HQ)eT = H(eQT )T

as, the product
(HQ)G′

T
uT = ( (HQ)G′

T
) uT = 0p×p(n0−1) u

T = 0p×1

The computed syndrome sT can be seen as the syndrome of the expanded 1 × pn0 error vector
e′ = eQT through the p × pn0 parity-check matrix H; it is thus possible to retrieve the original
1 × pn0 error vector e, via the efficient decoding algorithm described in Section 1.2.2. Indeed,
the syndrome decoding algorithm in Section 1.2.2 allows to recover e directly from sT , taking into
account the effect of transformation matrix Q while decoding.

After recovering e, according to eq. (1.12), Bob computes

x+ e = u
[
Ik|MT

l

]
(1.14)

and recovers u by looking at the first k = p(n0 − 1) bits of the vector resulting from eq. (1.14). In
case a decoding error occurs, it must be notified to the sender, who has to perform the encryption
again.
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LEDApkc IND-CCA2 encryption and decryption functions. To provide strong secu-
rity guarantees with the proposed PKC scheme, we consider the primitive conversion for code-
based cryptosystems proposed by Kobara and Imai in [23], i.e., the so called Kobara-Imai (KI)
γ-construction. As it will be clear from the subsequent description, LEDApkc provides a PKC with
IND-CCA2 limitedly to the secure lifetime of any key pair against reaction attacks, that however
can be easily estimated.

The main intuition of the KI conversion relies on xor-combining the plaintext to be encrypted
with the output of a DRBG, seeded with the random bit-string extracted from a TRNG. As a
consequence, the obtained obfuscated plaintext can be safely enciphered as the ciphertext will ap-
pear perfectly random. In order for the IND-CCA2 property to hold, a fresh random bit-string
should be available from a TRNG for each message encryption. In order to be able to success-
fully decrypt the plaintext, the seed of the DRBG is also enciphered alongside the message. The
secret seed is not simply concatenated to obfuscated plaintext, but it is xor-combined with the
digest computed by a hash function fed with the obfuscated plaintext. The resulting obfuscated
secret seed is then prefixed to the obfuscated plaintext to compose a message which is ready to
be encrypted with the McEliece encryption function previously defined. In particular, the k least
significant bits of this message are employed as information word of the selected QC-LDPC code
C(n, k) = C(pn0, p(n0 − 1)), while the remaining most significant bits are encoded (through a spe-
cific map called Constant Weight Encoding function) to obtain an n-bit error vector with a number
of asserted bits equal to the correction capability of the code t. Given the information word and
the error vector derived from the concatenation of the obfuscated TRNG seed and the obfuscated
plaintext, the McEliece encryption function is then employed to compute the codeword representing
the ciphertext.
As the KI γ-conversion is based on bit-wise manipulations, to provide a clear and detailed descrip-
tion of them we introduce some specific naming conventions. Bit-string values will be reported with
a teletype font name (e.g., the plaintext to be encrypted will be denoted as ptx, and the resulting
ciphertext will be denoted as ctx) while, the length of a bit-string, s, will also be expressed in bits
and denoted as ls.

A pseudo-code description of the KI encryption algorithm is shown in Algorithm 1.2.1. The de-
scribed procedure employs the QC-LDPC code parameters of choice (C(n, k) = C(pn0, p(n0 − 1))
able to correct up to t bit errors), and a hash function, Hash(), having a digest with a byte-aligned
bit-length lHash as configuration parameters. The procedure takes as input the LEDApkc public
key, PK, and a plaintext bit-string ptx with a bit-length 0 ≤ lptx ≤ linput− 2, where linput is speci-
fied as reported below. As an output, the LEDApkc encryption primitive returns a bit-string ctx

with lctx = pn0 bits – corresponding to the 1× pn0 binary codeword computed by the QC-LDPC
McEliece encryption function.

The maximum length of encipherable plaintext is bounded by linput − 2, where linput is a value
which need to be properly configured, keeping into account the sequence of operations in the KI-γ
scheme. The LEDApkc encryption transformation shown in Algorithm 1.2.1 starts from obtaining
a fresh random seed from a TRNG, which should be long enough to match the desired security level,
and derives a pseudorandom bit-string pad having the same length of a padded ptx. Subsequently,
an obfuscated plaintext bit-string obfuscatedPtx is obtained combining the pad via xor with the
ptx, which in turn has also been padded with a fixed-format binary string composed as a sequence
of zeros enclosed between two ones (lines 2–4). The DRBG employed in the scheme is required to
be a NIST standard DRBG, which leaves EC-DRBG, HMAC-DRBG and CTR-DRBG as the only
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Algorithm 1.2.1: LEDApkc encryption transformation

Data: n, k, t: QC-LDPC code parameters. n = pn0 codeword size, k = p(n0 − 1)
information word size, t error correction capability, n0 basic block length of the code,
p circulant block size.
Hash: hash function with digest length in bits lHash

Input: ptx plaintext bit-string, with 0 ≤ lptx ≤ linput − 2, where
linput = leword + p(n0 − 1)− lHash, and
leword =

⌊
log2

(
pn0

t

)⌋
−
((
p(n0 − 1) +

⌊
log2

(
pn0

t

)⌋)
mod 8

)
. In case the actual length

of the input plaintext is less than lptx, it is assumed to be padded with the
fixed-format string built as a sequence of zero or more 0s enclosed by two 1s.
LEDApkc public key PK: Ml = [M0, . . . ,Mn0−2], where Mi, 0 ≤ i ≤ n0 − 1 is a p× p
circulant block.

Output: ctx ciphertext bit-string

1 repeat
2 seed← TRNG()
3 pad← DRBG(seed) // bit-string with length linput
4 obfuscatedPtx← ConstantPad(ptx, linput)⊕ pad

5 obfuscatedSeed← ZeroExtend(seed, lHash)⊕Hash(obfuscatedPtx)
6 toencode← obfuscatedSeed||obfuscatedPtx
7 eword, iword← Split(toencode, leword, liword)
8 u← ToVector(iword) // 1× p(n0 − 1) information word vector

9 e, encodingOk← ConstantWeightEncoder(eword) // 1× pn0 error vector

10 until encodingOk = true
11 x← u

[
Ik|MT

l

]
+ e // 1× pn0 codeword; Ik is a k × k binary identity matrix

12 ctx← ToBitString(x) // bit-string with lctx = pn0

13 return ctx

three possible choices. CTR-DRBG was chosen as the primitive in our implementation due to its
higher throughput with respect to the other solutions, when comparing implementations with the
same security level.
After deriving obfuscatedPtx, the said bit-string is fed to the cryptographic hash function, Hash(),
and the corresponding digest is combined via xor with the secret seed obtaining an obfuscated
seed value obfuscatedSeed (line 4). Since the bit-length of the secret seed lseed and the one of
the hash digest lHash may not match, and in particular lseed ≤ lHash when the hash algorithm is
selected to match the same security level of the DRBG, seed may be extended with zeroes up to
lHash.
The LEDApkc encryption proceeds to concatenate obfuscatedSeed and the obfuscatedPtx (line
5), for obtaining both the information word iword, that will be encoded with the public QC-LDPC
code, and a pseudorandom string eword, which is employed to compute the random error vector
e to be added to the codeword resulting from the McEliece encryption function. In particular,
the information word is derived from the k = p(n0 − 1) rightmost bits of the concatenation of
obfuscatedSeed and obfuscatedPtx values (lines 6–7). The remaining portion of the bit-string,
eword, cannot be employed to build an error vector since it should be a bit-string with length
of n = pn0 bits and with the number of asserted bits equal to the correction capability of the
code t. To address this issue, a procedure called constant weight encoding is employed to map
the eword values into bit-strings with length pn0 and a number of asserted bits equal to t. The
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Algorithm 1.2.2: LEDApkc decryption transformation

Data: n, k, t: QC-LDPC code parameters. n = pn0 codeword size, k = p(n0 − 1)
information word size, t error correction capability, n0 basic block length of the code,
p circulant block size.
Hash: hash function with digest length in bits lHash

Input: ctx ciphertext bit-string.
LEDApkc private key SK: H,Q secret matrices.

Output: ptx plaintext bit-string

1 x← ToVector(ctx)
2 sT ← (HQ)xT

3 e← Q-Decode(sT , H,Q)
4 u← ExtractMostSignificantBits(x+ e, p(n0 − 1))
5 iword← ToBitString(u)
6 eword← ConstantWeightDecode(e)
7 obfuscatedSeed, obfuscatedPtx← Split(eword||iword)
8 seed← ZeroTrim(obfuscatedSeed⊕Hash(obfuscatedPtx, leword)
9 pad← DRBG(seed)

10 ptx← obfuscatedPtx⊕ pad

11 return ptx

constant-weight bit-strings are then employed to build the 1 × pn0 binary error vector e needed
to compute the 1 × pn0 codeword x (lines 8–9), which is in turn converted onto a ciphertext bit-
string ctx. The codomain of the constant weight encoding function (line 9) is the set of length
n = pn0, weight t strings, in turn stating that it is possible to encode safely as one of them a
bit-string eword with length leword = blog2(

(
n0p
t

)
)c bits. This amount of bits, added to the length,

liword = p(n0 − 1), of the information word iword yields the reliable amount of information which
can be transformed into the pair of binary vectors u, e (representing the information vector and
error vector, respectively) to be fed as input to a McEliece encryption function (line 11). Given the
fact that the hash digest is byte-aligned, and the plaintext ptx is considered to be byte-aligned too
by the NIST API, we also assume that the maximum practical amount of information to be encoded
(line 6–7) should be byte-aligned. To this end, we diminish the length of the bit-string eword by
the remainder modulo 8 of the sum of liword, and the constant weight encoding function capacity⌊
log2

(
pn0

t

)⌋
: leword =

⌊
log2

(
pn0

t

)⌋
−
((
p(n0 − 1) +

⌊
log2

(
pn0

t

)⌋)
mod 8

)
. This choice of diminishing

the input string of the constant weight encoding has the further advantage of allowing us to employ
an approximate implementation of the said function, described at the end of this Section, which
offer significant performance advantages at the cost of a small loss in capacity. We note that, should
the said approximate implementation fail to encode an input (line 10), it is sufficient to restart the
KI encryption process with a fresh TRNG seed.
The maximum length of the bit-string in input to the LEDApkc encryption function, denoted as
linput, is thus given by the sum of the actual capacity of the employed constant weight encoding, plus
the size of the information word p(n0 − 1), minus the size of the hash digest, i.e.: linput = leword +
p(n0−1)− lHash. To prevent ambiguities in the interpretation of a decoded message, the LEDApkc
encryption transformation takes an input plaintext ptx with bit-length 0 ≤ lptx ≤ linput − 2, and
always pads it with a constant bit-string taking the form 10∗1 (i.e., a sequence of one or more 0
binary digits, enclosed between two bits equal to 1) to obtain a plaintext message of maximum
bit-length. The constant padding is removed when the decryption process is completed, and any
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decrypted message not having the properly formatted constant appended is deemed invalid.
Algorithm 1.2.2 reporting the decryption procedure performs, in reverse order, the steps dual to
the ones in the encryption procedure.

Constant weight encoding/decoding. Concerning the constant weight encoding and decoding
procedure, we note that a straightforward approach to compute it may be obtained considering the
bit string to be encoded as a constant weight one as the binary representation of an unsigned
integer, and converting such an integer in a combinatorial number system [21]. Such a conversion
is guaranteed to be a bijective; however computing the said bijection to convert a binary string
into an n bit long constant weight one with weight t requires a computational effort in the same
range as computing the binomial

(
n
t

)
, which adversely impacts the performance of LEDApkc for

the parameters required to provide an appropriate security level (n in the tens of thousands, t in
the hundreds range).

An alternative solution relies on tackles the problem of performing the constant weight encoding
of the binary string considering it as the result of a very efficient encoding of a sequence of integers
representing the length of the zero runs in the constant weight word to be obtained. This approach
yields practically exploitable results when the run-length encoding known as Golomb Coding [17]
is exploited. Indeed Golomb Coding encodes a sequence of binary symbols where one is far more
frequent than the other (zeroes are far more frequent than ones in our constant weight words) as a
dense binary string with efficiencies which exceed 95% with the one-densities involved in LEDApkc.
The approach to encode the binary string is the following: a parameter d is estimated depending
on the density of the zeroes in the string. In particular, given the probability p = Pr{X = 0} of a
symbol of the sequence being equal to zero, the value of the parameter d is derived as the integer
rounding of the median of the distribution of the Bernoulli process with X = 0 being the successful
event and X = 1 the unsuccessful one. Once the value of d is determined, a run of zeroes of length
l is encoded according to the following procedure:

i. Divide l by d, yielding a quotient q and a remainder r

ii. Encode q in unary, emitting q ’1’ symbols followed by a ’0’

iii. Encode r through a truncated binary, thus employing at most dlog2(d)e bits.

Given the high encoding efficiency of the said procedure, it is highly likely that a random binary
string of appropriate length will decode to a constant weight string of weight t and length n if it
is interpreted as the encoding of a set of t zero runs, with an appropriate estimate of the value of
d. The efficiency can be raised through recomputing the estimate of d at each decoding passage,
as follows:

i. Compute the first estimate of d, d1 considering as the probability of a ’1’ occurring p1 = t1
n1

=
t
n

ii. Once the i-th length li of a run of zeroes is decoded compute the new estimate of d, di+1

considering as the probability of a ’1’ occurring pi+1 = ti−1
ni−li

This procedure yields an efficient way of obtaining a constant weight string, given an arbitrary
binary string of length blog2

(
n
t

)
c performing its decoding onto a sequence of the length of zero runs
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present among the ’1’ of the constant weight word. Symmetrically, the constant weight error vector
derived during the decryption procedure can be encoded into a compact binary string, yielding
back the value of eword which was generated during the encryption. Since the described procedure
achieves an efficiency in the 98%–99% range according to [34], and thus is not able to convert
any blog2

(
n
t

)
c bit long string into a constant weight vector, we implemented the constant weight

encoding procedure assuming that the string to be encoded is at least blog2

(
n
t

)
c bit long and the

eventual extra bits required are obtained materializing zeroes on the fly. After the constant weight
decoding phase, the decoded compact binary string is trimmed to the appropriate length by the
receiving end, in turn eliminating possible ambiguities.

1.2.2 An efficient decoding algorithm for LEDApkc

While it is possible to perform decoding of the private QC-LDPC code in LEDApkc employing a
classic BF decoder such as the one described in Algorithm 1.1.1, such a choice would not exploit
to the utmost the correction power of the QC-LDPC code at hand. Indeed, the positions of the
errors to be corrected are not uniformly distributed; instead they depend on the positions of the
ones in QT , which are known to the decoder.

Starting from classical BF, we have developed an improved decoder that is specifically designed for
LEDApkc, where the position of the ones in the expanded error vector e′ to be corrected is influenced
by the value of QT , as e′ is equivalent to a random error vector e with weight t multiplied by QT .
Since this improved decoder takes into account such a multiplication by the transpose of matrix Q
to estimate with greater efficiency the locations of the bits to flip, we denote it as Q-decoder.

Inputs of the decoder are the syndrome s′ according to eq. (1.13) and the matrices H and Q
according to eq. (1.7) and eq. (1.8), respectively. Output of the decoder is a 1 × n vector ê or a
decoding failure, where ê represents the decoder estimate of the error vector e appearing in (1.13).
Decoding goes through a maximum of lmax iterations, each iteration is fed with s(l−1) and ê(l−1),
and outputs s(l) and ê(l). Initialization is performed by setting s(0) = s and ê(0) = 0n, where 0n is
the length-n vector with all-zero entries. The l-th iteration of the Q-decoder performs the following
operations:

i. Compute Σ(l) = [σ
(l)
1 , σ

(l)
2 , · · · , σ(l)

n ] = s(l−1)H (this multiplication is performed lifting all the
elements of both s(l−1) and H in the integer domain Z, hence Σ(l) is a vector of integers
having entries between 0 and dv).

ii. Compute R(l) = [ρ
(l)
1 , ρ

(l)
2 , · · · , ρ(l)

n ] = Σ(l)Q (this multiplication is performed in Z as well).

iii. Define b(l) = maxj=1,2,··· ,n

{
ρ

(l)
j

}
and =(l) =

{
v ∈ [1, n]| ρ(l)

v = b(l)
}

.

iv. Update ê(l−1) as

ê(l) = ê(l−1) +
∑

v∈=(l) qv,

where qv is the v-th row of QT .

v. Update the syndrome as

s(l) = s+ ê(l)HT
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vi. If the weight of s(l) is zero then stop decoding and return ê(l).

vii. If l+ 1 ≤ lmax then increment l and go back to step i), otherwise stop decoding and return a
decoding failure.

As in classical BF, the first step of this algorithm computes the vector Σ(l). Each entry of this
vector counts the number of unsatisfied parity-check equations corresponding to that bit position,
and takes values in [0; dv]. This evaluates the likelihood that the entry of e′ at the same position is
one. Differently from classical BF, in step ii) the correlation R(l) between these likelihoods and the
rows of QT is computed. In fact, the expanded error vector e′ = eQT can be written as the sum of
the rows of QT indexed by the support of e, that is

e′ =
∑

j∈Ψ{e}

qj (1.15)

where Ψ {e} denotes the support of e.

Since both Q and e are sparse (that is, m, t � n), cancellations between ones are very unlikely.
When the correlation between Σ(l) and a generic row qv of QT is computed, two cases may occur:

• If v /∈ Ψ {e}, then it is very likely that qv has a very small number of common ones with all
the rows of QT forming e′, hence the correlation is small.

• If v ∈ Ψ {e}, then qv is one of the rows of QT forming e′, hence the correlation is large.

The main difference with classical BF is that, while in the latter all error positions are considered
as independent, the Q-decoder exploits the correlation among expanded errors which is present in
LEDApkc, due to the effect of QT . This allows to achieve important reductions in the number of
decoding iterations. As a further advantage, this decoder allows recovering e, besides e′, without
the need of computing and storing the inverse of matrix QT .

1.2.3 Choice of the Q-decoder decision thresholds

One important aspect affecting performance of Q-decoders is the choice of the threshold values
against which the correlation is compared at each iteration. As described in Section 1.2.2, a natural
choice is to set the threshold used at the l-th iteration equal to the element with maximum value of
the correlation R(l). This strategy ensures that only those few bits that have maximum likelihood of
being affected by errors are flipped during each iteration, thus achieving the lowest DFR. However,
it has some drawbacks in terms of complexity, since the computation of the maximum correlation
entails significant memory storage and some repeated operations.

Therefore, we consider a different strategy, which allows computing the threshold values on the
basis of the syndrome weight at each iteration. According to this approach, during an iteration it
is sufficient to compute the syndrome weight and read the corresponding threshold value from a
look-up table. This strategy still allows to achieve a sufficiently low DFR, but within a significantly
smaller number of decoding iterations.

Let us consider the l-th iteration of the Q-decoder, and denote by tl the weight of the error vector
e(l) and with t′l the weight of the corresponding expanded error vector e′(l) = e(l)QT . Let us
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introduce the following probabilities [5]

pci(t
′
l) =

min[n0dv−1,t′l]∑
j = 0, j odd

(
n0dv−1

j

)(
n−n0dv
t′l−j

)(
n−1
t′l

) (1.16)

pic(t
′
l) =

min[n0dv−1,t′l−1]∑
j = 0, j even

(
n0dv−1

j

)(
n−n0dv
t′l−j−1

)(
n−1
t′l−1

) (1.17)

where:

• pci(t
′
l) is the probability that a codeword bit is error-free and a parity-check equation evaluates

it wrongly;

• pic(t
′
l) is the probability that a codeword bit is in error and a parity-check equation evaluates

it correctly.

In both cases, the syndrome bit is equal to 1. Thus, the probability that each syndrome bit is
equal to 1 can be obtained as pic(t

′
l) + pci(t

′
l); so, the average syndrome weight at iteration l can

be computed as

w(l)
s = E

[
wt
{
s(l)
}]

=
[
pic(t

′
l) + pci(t

′
l)
]
p (1.18)

where wt {·} denotes the Hamming weight. Since both the parity-check matrix and the error vector

are sparse, the probability of wt
{
s(l)
}

being significantly different from w
(l)
s is negligible.

So, (1.18) allows predicting the average syndrome weight starting from t′l. In order to predict how
t′l varies during iterations, let us consider the i-th codeword bit and the corresponding correlation

value ρ
(l)
i at iteration l. The probability that such a codeword bit is affected by an error can be

written as

P
{
ei = 1|ρ(l)

i

}
=
P
{
ei = 1, ρ

(l)
i

}
P
{
ρ

(l)
i

} =

=
P
{
ei = 1, ρ

(l)
i

}
P
{
ei = 1, ρ

(l)
i

}
+ P

{
ei = 0, ρ

(l)
i

} =

=

1 +
P
{
ei = 0, ρ

(l)
i

}
P
{
ei = 1, ρ

(l)
i

}
−1

(1.19)

where ei is the i-th bit of the error vector used during encryption. After some calculations, we
obtain

P
{
ei = 1|ρ(l)

i

}
=

1

1 + n−tl
tl

(
pci(tl)
pic(tl)

)ρ(l)i
(

1−pci(tl)
1−pic(tl)

)mdv−ρ(l)i

(1.20)

where pci(tl) and pic(tl) are given in (1.17), with tl as argument instead of t′l.

Adding the i-th row of QT to the expanded error vector e′ is the same as flipping the i-th bit of
the error vector e. Hence, we can focus on e and on how its weight tl changes during decoding
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iterations. The values of tl can be estimated as t′l/m, due to the sparsity, while those of t′l can be
estimated according to eq. (1.18).

The decision to flip the i-th codeword bit is taken when the following condition is fulfilled

P
{
ei = 1|ρ(l)

i

}
> (1 + ∆)P

{
ei = 0|ρ(l)

i

}
(1.21)

where ∆ ≥ 0 represents a margin that must be chosen taking into account the DFR and complexity:
increasing ∆ decreases the DFR but increases the number of decoding iterations. So, a trade-off
value of ∆ can be found that allows achieving a low DFR while avoiding unnecessary large numbers
of iterations.

Since P
{
ei = 0|ρ(l)

i

}
= 1− P

{
ei = 1|ρ(l)

i

}
, (1.21) can be rewritten as

P
{
ei = 1|ρ(l)

i

}
>

1 + ∆

2 + ∆
. (1.22)

P
{
ei = 1|ρ(l)

i

}
is an increasing function of ρ

(l)
i , hence the minimum value of ρ

(l)
i such that (1.22)

is satisfied can be computed as

b(l) = min

{
ρ

(l)
i ∈ [0;mdv], : P

{
ei = 1|ρ(l)

i

}
>

1 + ∆

2 + ∆

}
(1.23)

and used as the decision threshold at iteration l.

Based on the above considerations, the procedure to compute the decision threshold value per each
iteration as a function of the syndrome weight can be summarized as follows:

i. The syndrome weights corresponding to t′l = 0,m, 2m, · · · ,mt (which are all the possible
values of t′l neglecting cancellations) are computed according to (1.18). These values are
denoted as {ws(0), ws(m), · · · , ws(mt)}.

ii. At iteration l, given the syndrome weight w̄s
(l), the integer j ∈ [0, t] such that ws(jm) is as

close as possible to w̄s
(l) is computed.

iii. Consider tl = j and compute b(l) according to (1.23) and (1.20). The value of b(l), so obtained,
is used as the decoding threshold for iteration l.

The above procedure can be implemented efficiently by populating a look-up table with the pairs
{wj , bj}, sequentially ordered. During an iteration, it is enough to compute w̄s

(l), search the biggest
wj in the look-up table such that wj < w̄s

(l) and set b(l) = bj .

We have observed that, moving from the bigger values of wj to the smaller ones, the threshold
values computed this way firstly exhibit a decreasing trend, then start to increase. According to
numerical simulations, neglecting the final increase is beneficial from the performance standpoint.
Therefore, in the look-up table we replace the threshold values after the minimum with a constant
value equal to the minimum itself.
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Chapter 2

Security analysis

2.1 Hardness of the underlying problem

The set of computational decision problems for which an efficient solution algorithm can be devised
for a non-deterministic Turing Machine (TM) represents a fruitful computational class from which
primitives for asymmetric cryptosystems have been designed. Such a computational class, known
as the NP (Nondeterministic Polynomial) class, is characterized by problems for which it is efficient
(i.e., there is a polynomial-time algorithm) to verify the correctness of a solution on a deterministic
TM, while finding a solution to the problem does not have in general an efficient algorithm on a
deterministic machine, hence the computational asymmetry required to build a cryptosystem.

When considering a quantum TM, i.e., the abstract computational model for a quantum computer,
the class of problems which can be solved in polynomial time, with the quantum TM providing
the correct answer with probability > 2

3 , is known as the Bounded-error Quantum Polynomial time
class, BQP [9]. In 1997 Peter Shor proved that the integer factoring problem, which has its decisional
version in NP, is effectively in BQP [37], in turn demonstrating that a widely adopted cryptographic
trapdoor function can be broken in polynomial time by a quantum computer. Consequentially, to
devise a proper post-quantum asymmetric primitive it is crucial to choose a computational problem
which resides outside BQP as its underlying foundation. While there is no current formal proof,
a sub-class of NP, the NP-complete problem class, is widely believed to contain computational
problems not belonging to BQP, thus allowing only a polynomial speedup in their solution with a
quantum TM.

LEDApkc is constructed starting from the computational problem of performing the decoding of
a codeword, i.e., deriving the corresponding error vector with a bounded weight for a general
linear code, which was shown to be NP-complete in [7]. Indeed, in [7] the authors show that
there is no exponentially faster way to compute the error vector of a general linear code than
through enumerating and testing all the possible ones, unless P=NP. While the public matrix M of
the LEDApkc cryptosystem has quasi-cyclic structure, we note that no algorithms currently exist
exploiting this regularity to gain an exponential advantage in decoding the corresponding code.

With this statement standing, the security analysis of LEDApkc examines and quantifies the effec-
tiveness of the best known attacks detailing the efficiency of algorithms running on both classical
and quantum computers providing non-exponential speedups over an enumerative search for the

26



LEDApkc

correct error vector. We remark that currently no algorithm running on either a classical TM or
a quantum TM provides an exponential speedup in solving the computational problem underlying
LEDApkc compared to an exhaustive search approach.

2.2 Analysis of the algorithm with respect to known attacks

Squaring Attacks. Another potential attack to systems based on QC-LDPC codes is the one
presented in [36]. This attack uses a so-called squaring technique to find a a low-weight error vector
and thus low-weight codewords more efficiently than with a general information set decoding (ISD)
algorithm. This attack, however, is applicable if and only if the size of the circulant blocks p
is even. In LEDApkc p is chosen as a prime both as a conservative choice against cryptanalysis
exploiting factorization of p, and gaining in terms of efficiency due to the invertibility test reported
in Theorem 1.2.1.

Decoding Attacks (DA) and Key Recovery Attacks (KRA). Concerning attacks which
aim at solving efficiently the decoding of a message exploiting the public code representation,
a prime position is occupied by the ISD approach. The ISD approach attempts at performing
the decoding of a general linear code (polynomially) more efficiently than an exhaustive search
approach, and was pioneered by Prange in [32]. Subsequent improvements of Prange’s algorithm
were presented by Lee-Brickell [24], Leon [25] and Stern [38] improving, although polynomially on
Prange’s original algorithm. Among these variants, the most noteworthy one is the one by Stern [38]
which is currently the one best exploiting the speedups provided by quantum computers according
to [12]. In particular, a significant portion of Stern’s algorithm can be solved employing Grover’s
algorithm [18] to cut down the running time to the square root of the one needed for a computation
on a classical platform. By contrast,when considering efficient execution on classical computers
the most efficient ISD turns out to be the Becker-Joux-May-Meurer (BJMM) algorithm proposed
in [6] which is part of a family of recent results [8, 27,30,31]. As a consequence, the security levels
against attackers performing a decoding attack (DA) with classical computers have been estimated
by considering the work factor of the BJMM algorithm, while the security levels against quantum
computer-equipped attackers were computed taking into account Stern’s algorithm.

A different approach at attacking the system is the one of efficiently finding low-weight codewords
in the dual of the public code of the cryptosystem. It is possible to show that the low weight
codeword finding problem is equivalent to the general linear code decoding problem, thus allowing
ISD to be retrofit to this task too. In the case of LEDApkc we note that the matrix L = HQ,
which is generally sparse, is a valid parity-check matrix for the public code. Since the rows of L are
sparse codewords of the code generated by M (that is, the dual code of the public code), and have
weight in the order of n0dvm, an attacker may search for them in the dual of the public code. An
opponent may thus exploit an efficient algorithm for the search of low-weight codewords in linear
block codes, thus performing a key recovery attack (KRA) on L, row by row. Then, because of
the sparsity of L, the opponent may succeed in separating H from Q and recovering the secret key.
Alternatively, the attacker may just attempt to perform the decoding action employing the entire
L, which has low weight, as a parity-check matrix.

We defend LEDApkc from both DAs and KRAs employing parameters which prevent the low-weight
codeword finding from succeeding given a computational power bounded by the desired security
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level. To this end, we take into account the fact that the nature of the QC codes employed in
LEDApkc provides a speedup by a factor

√
p with respect to the running time of the ISD algorithm

employed to perform a general linear code decoding [35]. Instead, when the ISD algorithm is
employed with the purpose of retrieving low-weight codewords in L the speedup factor provided by
the QC structure of L is p with respect to its application to a general code. Both these speedup
factors are taken into account in our estimates of the security level for a given parameter set.

Quantum Stern’s algorithm. Considering the fact that Stern’s algorithm [38] is the one best
suited for quantum computer execution, and will thus be employed to determine the parameters of
LEDApkc, we briefly resume the results in [12], describing how the application of Grover’s algorithm
to ISD can be taken into account when computing the complexity of KRAs and DAs.

ISD is an algorithm A(C(n, k), w) taking as input a code C(n, k) with length n, dimension k, and
tries to find a codeword of weight w or, equivalently, an error vector with weight w given the code
and the corresponding syndrome.

In LEDApkc employing the ISD to perform a general decoding will have it acting on an n0p bits
long code, with dimension (n0 − 1)p, trying to correct t errors, while employing it to perform
low-weight codeword finding is equivalent to running it on a code n0p bits long, with dimension p,
trying to correct n0dvm errors.

The basic structure of each ISD algorithm is essentially the same, and is based on the identification
of an information set, that is, a set of k linearly independent columns of the generator matrix of
the code. Recovering the entries of the error vector affecting this set is enough to reconstruct the
whole error vector. The algorithm must be run iteratively, and each iteration has a probability
of success pA. Thus, the expected number of iterations that makes the attack successful is 1

pA
.

The probability pA is obtained as the product of pinv and pe, where pinv is the probability that
an iteration of ISD has selected a set of k linearly independent vectors, while pe is the probability
that the error vector entries affecting the selected set can be recovered. It can be proven that pinv
converges to pinv ≈ 0.29 as the size of the binary matrix being inverted increases, while for pe we
have

pe =

(
w

2m

)(
n−w
k−2m

)(
2m
m

)(
n−k−w+2m

l

)
4m
(
n
k

)(
n−k
l

)
according to [38], where l and m are parameters which influence the complexity of the algorithm
and must be optimized to minimize the value of pe.

Taking into account the speedup following from the application of Grover’s algorithm to Stern’s

algorithm, it follows that the algorithm is successful after performing only π
4

√
1
pA

= π
4

√
1

pinvpe

iterations on average, instead of 1
pinvpe

. Let us define:

• cdec as the cost in qubit operations of decoding the input qubits to the inputs of the clas-
sical algorithm which must be performed whenever an iteration completed on the quantum
computer;

• cit as the number of bit operations needed to perform an iteration of the classical Stern’s
algorithm;

• cinv as the cost of inverting the matrix obtained with the k columns selected during the
iteration; in fact, because a quantum implementation of Stern’s algorithm must be performed
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entirely with revertible operations, skipping an iteration is not possible, even if the selected
k-columns do not correspond to an information set (i.e., they are not linearly independent).

By taking the conservative assumption that a qubit operation has the same cost of a bit operation, it
is possible to express the amount of operations required to execute Stern’s algorithm on a quantum
computer as

π

4

√
1

pinvpe
(cdec + cinv + cit) (2.1)

Estimating the actual value of cdec can be very hard, since it depends on the size of the input
given to A. For example, some input parameters can be fixed (in this case, the number of bits
needed to represent the input given to A decreases) but, at the same time, the value of pe might
get lower (since, in this case, we might not consider an optimal input choice). While estimates for
cdec have put it in the 230 range [12], we conservatively consider cdec = 0. Finally, to compute the
two remaining computational costs, we refer to the following expressions from [38]:

cit = 2lm

(
k/2

m

)
+ 2m(n− k)

(
k/2

m

)2

2−l (2.2)

cinv =
1

2
(n− k)3 + k(n− k)2 (2.3)

BJMM algorithm complexity. As already mentioned, when only classical computers are avail-
able, the most efficient ISD algorithm turns out to be the BJMM algorithm proposed in [6]. A
precise estimation of the work factor of this algorithm in the finite-length regime can be found
in [20], and it has been used to compute the work factor of attacks based on ISD against the
proposed instances of LEDApkc, when performed with classical computers. While the complete
expression of the computational complexity of the BJMM algorithm is rather complex, we point out
that a simple expression providing an approximate but fairly intuitive expression for it is reported
in [11]: 2cw, where c = log2

1
1− k

n

.

2.3 System parameters for the required security categories

Nine sets of parameters for LEDApkc are proposed, clustered into in three classes corresponding
to different security guarantees. Each one of the three instances in each class correspond to a
different value of n0 (2, 3, 4), yielding a different balance between performance and public key size.
The parameters of the nine instances of LEDApkc are reported in Table 2.1 for the NIST required
security categories 1, 3 and 5, respectively. We assume that the security requirements of category
2 can be fulfilled employing category 3 parameters, and the security requirements for category 4
are fulfilled by category 5 parameters. In the table, the superscript (pq) denotes that the attack
work factor has been computed taking into account quantum speedups due to Grover’s algorithm,
while the superscript (cl) denotes that only classical computers have been considered in evaluating
the attack work factor.

For each security category and considered value of n0, computed the minimum values of dv mdv
and t which ensure the desired the security level against KRA and DA, respectively. Then we
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selected a value for the circulant block size p as a prime with ord2(p) = p − 1 to provide efficient
invertibility tests for circulant blocks. We have checked whether tm errors can be corrected by the
private code through Q-decoding maintaining a sufficiently low DFR via Montecarlo simulations.
In particular, we targeted 10−8 as an acceptable DFR. Otherwise, we have increased the value of
p and repeated the procedure.

In order to obtain a preliminary estimate of the value of p to speed up the design procedure, we
exploited the BF asymptotic thresholds supplied in [5]. These thresholds allow, given the code size
n, dimension k and density dv, to compute an estimate of the biggest weight of an error vector
which can be corrected by the code, using a classical BF decoder.

This approach can be used also for predicting the correcting capability of LEDApkc: indeed, we
have observed that, in the waterfall region of the Q-decoder, the DFR of the system, when weight-t
error vectors are used, can be approximated by the one of a BF-decoder, taking as input a parity
check matrix in the same form as (1.7) and having circulant blocks with weight equal to mdv.
Thus, the BF threshold can be used to predict the correcting capability of a LEDApkc instance:
if the theoretical threshold is below the value of t, then a bigger value of p must be chosen. We
want to stress that the described DFR estimation procedure is only approximated, and Montecarlo
simulations must be performed in order to evaluate the actual DFR of the system.

In order to make a conservative design choices for the parameters, we have considered some margin
in the complexity estimates of the attacks, such that the actual security level for these instances is
larger than the target one. This also accounts for possible (though rare) cancellations occurring in
L when computed as the product of H and Q, which may yield a row weight slightly smaller than
mdvn0, influencing the resistance to KRAs. The values of dv have been chosen greater than 15 in
order to avoid codes having small minimum distances.

To ensure that both H and Q have maximum rank, we chose dv odd and [m0,m1, · · · ,mn0−1] have
been chosen such that the value of Π {w(Q)} is odd and smaller than p, allowing theorem 1.2.1
to hold. Indeed since, L = HQ is a valid parity-check matrix for the public code, a singular Q,
may result in the rank of L being lower than p, leading to a code with a co-dimension lower than
p. When multiple choices of m and dv were possible to achieve the same security level, we have
selected those with the lowest values of the product mdv, as this is known to enhance the error
correcting capability of the private code.

The system parameters design procedure can thus be summarized as follows:

i. pick a desired security level SL expressed as the log2 of the number of operations to be
performed and a number of circulant blocks n0;

ii. consider the computational effort of performing a decoding via ISD and compute the minimum
number of errors t̂, in order to ensure that DAs take more than 2SL operations;

iii. consider the computational effort of performing a KRA via ISD and compute the minimum
value of mdv, in order to ensure that KRAs take more than 2SL operations; denote this value
as d̂′v;

iv. compute an initial value of p such that ordp(2) = p−1 and that the resulting code is expected
to be correcting at least t errors via Q-decoder according to asymptotic estimates;

v. choose dv as an odd number and a set of integers [m0,m1, · · · ,mn0−1] such that Π {w(Q)} is
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Table 2.1: Parameters for LEDApkc and estimated computational efforts to break a given instance
as a function of the security category and number of circulant blocks n0

Category n0 p dv [m0, · · · ,mn0−1] t SL
(pq)
DA SL

(pq)
KRA SL

(cl)
DA SL

(cl)
KRA DFR

1

2 27, 779 17 [4, 3] 224 135.43 134.84 217.45 223.66 ≈8.3·10−9

3 18, 701 19 [3, 2, 2] 141 135.63 133.06 216.42 219.84 . 10−9

4 17, 027 21 [4, 1, 1, 1] 112 136.11 139.29 216.86 230.61 . 10−9

2–3

2 57, 557 17 [6, 5] 349 200.47 204.84 341.52 358.16 . 10−8

3 41, 507 19 [3, 4, 4] 220 200.44 200.95 341.61 351.57 . 10−8

4 35, 027 17 [4, 3, 3, 3] 175 200.41 201.40 343.36 351.96 . 10−8

4–5

2 99, 053 19 [7, 6] 474 265.38 267.00 467.24 478.67 . 10−8

3 72, 019 19 [7, 4, 4] 301 265.70 270.18 471.67 484.48 . 10−8

4 60, 509 23 [4, 3, 3, 3] 239 265.48 268.03 473.38 480.73 . 10−8

odd and smaller than p and mdv ≥ d̂′v. If more than a solution is possible pick the one with
mdv closest to d̂′v;

vi. simulate the DFR of the code; if it is not sufficiently low, restart from (iv) and choose a larger
value of p.

In the steps (ii) and (iii) a temporary value of p is used to compute the work factor of the attacks,
which however do not exhibit a significant dependence on p (and so, on n). Nevertheless, at the
end of the design process, it is necessary to verify that the final value of p actually yields a work
factor of both DAs and KRAs above the target security level.

Table 2.1 reports the values of the parameters derived with the aforementioned procedure for the
nine instances of LEDApkc. The DFR were estimated through Montecarlo simulations: for all the
parameter sets belonging to categories 3 and category 5 we computed 108 decoding actions without
encountering a single decoding error. For the parameter set corresponding to category 1, with
n0 = 2 circulant blocks we obtained an estimate of the DFR of ≈ 8.3 · 10−9, having encountered 20
decoding errors over 2.394 · 109 decoding actions. For the parameters corresponding to category 1
and n0 ∈ {3, 4} we encountered no decoding errors during the computation of 109 decoding actions.

2.4 Reaction attacks and lifetime of a LEDApkc keypair

In addition to the proper sizing of the parameters of LEDApkc so that it withstands the aforemen-
tioned attacks, a last concern should be taken into account concerning the lifetime of a LEDApkc
keypair. Indeed, whenever an attacker may gain access to a decryption oracle to which he may
pose an unlimited amount of queries, the so-called reaction attack become applicable. Reaction
attacks recover the secret key by exploiting the inherent non-zero DFR of QC-LDPC codes [15].
In particular, these attacks exploit the correlation between the DFR of the code and the supports
of the private matrices and the error vector used in encryption. Indeed, whenever e and H, Q or
both of them have pairs of ones placed at the same distance, the decoder exhibits a DFR smaller
than the average.

Such attacks require the collection of the status of the decoding (failure-non failure) on a ciphertext
for which the attacker knows the distances in the support of the error vector, for a significant number
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of ciphertexts, to achieve statistical confidence in the result. The information on the decoding
status is commonly referred to as the reaction of the decoder, hence the name of the attack. In the
following we briefly recall the work of [15], and provide an estimation of the number of ciphertexts
required to recover the secret key of a LEDApkc instance. This analysis provides a simple criterion
for estimating a secure lifetime of each keypair, which must be renewed after a fixed number of
decoding failures is encountered.

Given a binary vector v of length p, having Ψv = {p0, p1, · · · , pw} as its support, i.e., the set of
positions of v containing a symbol one, we define its distance spectrum DS(v) as:

DS(v) = {min {|pi − pj |, p− |pi − pj |}, pi, pj ∈ Ψv} (2.4)

For a circulant matrix C, the distance spectrum DS(C) is defined as the distance spectrum of
its first row, since all the rows share the same spectrum. Indeed, it can be easily shown that the
cyclic shift of a vector does not change its distance spectrum. As shown in [15], it is possible to
reconstruct a vector v once its distance spectrum and number of set symbols is known.

The ultimate goal of a reaction attack is the reconstruction of the matrix H̃ = HQT , which is a
sparse parity-check matrix for the public code and can be used to recover and correct the error
vector e. In order to accomplish this task, it is necessary for the attacker to distinguish distances
belonging to DSH =

⋃n0−1
i=0 DS(Hi) from those belonging to DSQ =

⋃n0−1
i=0 DS(Q0i). Since an

IND-CCA2 secure conversion is adopted, the error vector used during encryption cannot be chosen
by Eve, and can be seen as a randomly extracted vector among all the possible

(
n
t

)
n-tuples with

weight t.

In these attacks, Eve generates a large number of valid plaintexts/ciphertexts pairs and sends
the ciphertexts to Bob, asking for decryption. Then, the analysis on Bob’s reactions (in terms of
decoding success or failure) is exploited by Eve to recover DSH and DSQ. It is useful to decompose
e into p-bit blocks, i.e., e = [e0, e1, · · · , en0−1], where each block ei has length p. Eve creates four
integer vector of length p/2: a, b, v and u and initializes them to zero. Then, Eve generates T
plaintext/ciphertext pairs and sends the ciphertexts to Bob for decryption. For each decrypted
ciphertext, Eve goes through the following steps:

i. compute the distance spectra of all the error vectors DS(e0), DS(e1), · · · , DS(en0−1);

ii. if a distance d is contained in at least one spectrum DS(ei), increment b(d) by 1;

iii. if a distance d is contained in at least one spectrum DS(ei), and there is a decoding failure,
increment a(d) by 1;

iv. if a distance d is contained in the spectrum of the first error vector DS(e0), increment v(d)
by 1;

v. if a distance d is contained in the spectrum of the first error vector DS(e0) and there is a
decoding failure, increment u(d) by 1.

After this procedure has been performed for all the T ciphertexts, the four vectors are used to
obtain information about DSH and DSQ as follows. Then the ratio p(d) = a(d)

b(d) is used to estimate

the presence of a distance in: i) neither H nor Q, or ii) H only, or iii) Q only, or iv) in both H

and Q. The ratio pQ(d) = u(d)
v(d) , instead, is used to detect if a distance included in Q is included in

its first row of circulant blocks or in other block rows of Q.
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In order to provide an example of the use of p(d), let us consider the case of a code with parameters
n0 = 2, p = 2003, dv = 11, t = 33, [m0,m1] = [3, 2]; in Fig. 2.1 we report the values of p(d), for
each d ∈ [1, bp/2c], after the analysis of T = 4 · 107 ciphertexts.

0 100 200 300 400 500 600 700 800 900 1,000

0.100

0.102

0.104

0.106

0.108

Distances in H

Distances in both H and Q

Distances in Q

Distances neither in H nor in Q

Figure 2.1: Example of distribution of p(d) after collection of T = 4 · 107 ciphertexts

As we can see from the figure, the estimated p(d) values follow different distributions, depending on
the presence of the corresponding distances in the spectrum of H or Q (or both of them). Hence,
a threshold criterion can be used to assign each distance to the corresponding subset. Once this
analysis has been performed, Eve knows some candidates for the blocks of H and Q. Then, by
using the ratio pQ(d) she can identify distances coming from the first row of blocks of Q, and use
them jointly with the public key in order to obtain H̃. After that, the attack can be considered
successfully completed.

A critical parameter for this attack is T , which is the number of collected ciphertexts: if T is not
sufficiently large, the estimates p(d) are not statistically reliable and the distance spectrum analysis
is inaccurate. Every time there is a decoding error, the vectors a and u are updated; the bigger the
values of a and u, the more reliable the estimates, since the analysis is based on a larger number
of decoding errors. We can study the mean values of a and u in order to estimate the effectiveness
of the attack. After observing T ciphertexts, the average number of updates is T ·DFR. We must
take into account that each error vector contains only a fraction of the distances in the spectrum,
so it contributes only to the update of a portion of a and u. Let us focus on a distance d, and
denote as pa,d the probability that at least one of DS(ei) contains d, and as pu,d the probability
that DS(e0) contains d. Then, the average values of a(d) and u(d) can be estimated as:

E [a(d)] = T ·DFR · pa,d (2.5)

E [u(d)] = T ·DFR · pu,d (2.6)

A simple expression for pu,d can be obtained as follows. The p-bit block e0 may have weight between
0 and t. Let us suppose that its weight is tp, which occurs with probability

ptp =

(
p
tp

)(
n−p
t−tp
)(

n
tp

) (2.7)
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In this case, there are Ntp =
(
tp
2

)
couples of ones in e0 producing distances in the corresponding

spectrum. We can assume that such distances are uniformly distributed and uncorrelated. Thus,
the probability that a distance d is included in e0 can be estimated as

pu,d(tp) = 1−

(bp/2c+Ntp−2
Ntp

)
(bp/2c+Ntp−1

Ntp

) =
Ntp

bp/2c+Ntp − 1
(2.8)

Then, we have:

pu,d =
t∑

tp=0

ptppu,d(tp) =
t∑

tp=0

(
p
tp

)(
n−p
t−tp
)(

n
tp

) ·
Ntp

bp/2c+Ntp − 1
(2.9)

Since e is made of n0 blocks, we have:

pa,d = 1− (1− pu,d)n0 (2.10)

We have verified through numerical simulations that (2.9) and (2.10) provide accurate approxi-
mations of the actual values of these probabilities (despite the fact that some couples of ones are
indeed correlated has been neglected). Let us define DSU = DSH

⋃
DSQ. The estimation phase

of the attack can be modeled as the solution of the following two problems:

Problem 1: for each d s.t. 1 ≤ d ≤ bp/2c, decide whether d ∈ DSU or not.

Problem 2: for each d ∈ DSU , decide which one of the following statements is true:

i. (d ∈ DSH) ∧ (d /∈ DSQ);

ii. (d /∈ DSH) ∧ (d ∈ DSQ);

iii. (d ∈ DSH) ∧ (d ∈ DSQ).

Since Problem 2 can be solved only if Problem 1 has been solved, its solution cannot be easier than
that of Problem 1. In order to make a conservative analysis of the system security, let us focus
on Problem 1 only, and evaluate the accuracy with which an attacker is able to solve it. In other
terms, we are considering only a portion of the attack, since the matrix H̃ can be reconstructed
only if DSH and DSQ are correctly recovered.

Let us consider several values of T , and for each of them let us obtain the estimated values of p(d).
For each considered value of T , there is an optimized threshold value Θ, such that if p(d) > Θ,
then the attacker concludes that d /∈ DSU . This criterion leads to splitting the distances into two
subsets: the subset DS∗U , which contains the distances that are estimated as not belonging to DSU ,
and the subset DS∗U , which contains the distances that are estimated as belonging to H or Q, or
both of them. For each value of T , the number of errors in the subset assignment is the total
number of distances that are wrongly assigned to a subset. Then, the accuracy of the attack can
be measured as

η = 1−
∣∣DS∗U ⋂DSU ∣∣+

∣∣DS∗U ⋂DSU ∣∣
|DSU |

(2.11)

where |·| denotes the cardinality of a set.

We can put a threshold on η, denoted as η̂, to find a secure lifetime of any keypair. A possible
choice is η̂ = 0.5, meaning that the attacker is able to estimate correctly only half of the distances
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Table 2.2: Values of pa,d and pu,d for the proposed instances of LEDApkc

n0 p t pu,d pa,d

2 27, 779 224 3.09 · 10−1 5.22 · 10−1

3 18, 701 141 1.04 · 10−1 2.81 · 10−1

4 17, 027 112 4.35 · 10−2 1.62 · 10−1

2 57, 557 349 3.44 · 10−1 5.70 · 10−1

3 41, 507 220 1.14 · 10−1 3.04 · 10−1

4 35, 027 175 5.14 · 10−2 1.90 · 10−1

2 99, 053 474 3.61 · 10−1 5.91 · 10−1

3 72, 019 301 1.22 · 10−1 3.23 · 10−1

4 60, 509 239 5.53 · 10−2 2.04 · 10−1

included in DSU . In this case, the other half of the distances must be guessed by the attacker, but
their enumeration is unfeasible for all the proposed instances of LEDApkc.

The accuracy of the attack depends on a(d), since the confidence in the estimation of p(d) = a(d)
b(d)

increases with a(d). Hence, we can translate the condition η > η̂ for considering the attack successful
into a threshold condition on a(d), i.e., E [a(d)] > â. Then, the lifetime T̂ of a key pair can be
assumed as the maximum value of T such that E [a(d)] ≤ â. With a pessimistic assumption, the
effect of pa,d can be neglected, that is, we can assume pa,d = 1. This way, we make the conservative
assumption that, upon occurrence of a decoding failure, all distances are updated. This way, we
have:

T̂ = â ·DFR−1 (2.12)

We point out that neglecting pa,d results in a significant underestimation of the minimum number
of ciphertexts which make the attack feasible. In Table 2.2 we report the values of pa,d and pu,d
for the LEDApkc instances we propose. As we can see from the table, the values of pa,d range
from a maximum of ≈ 0.6 to a minimum of ≈ 0.2, meaning that we are not taking into account an
additional factor of approximately 2÷ 5 in the lifetime of a key pair.

Both in [15] and in our simulations, realistic values of E [a(d)] which are needed to make the attack
successful are in the order of 106. Instead, in all our simulations values of E [a(d)] in the order of
104 always led to small values of η (in the order of 0.5 or less). Hence, by assuming â = 104, we
assure that the attack cannot be successfully performed. The estimated lifetime of a key pair can
then be assumed as T̂ = 104DFR−1.

Considering the DFR values we have obtained through numerical simulations, we can now compute
the expected lifetimes of the nine LEDApkc instances listed in Table 2.1. For the parameters sets
of category 1 having n0 = 3 and n0 = 4, the lifetime of a key pair can be estimated as T̂ & 1013

ciphertexts. For all the others parameters sets, it can be estimated as T̂ & 1012 ciphertexts. It is
important to observe that this approach can be translated into practice very easily: after a keypair
encounters â decoding failures, it must be discarded.

In order to verify this approach, the attack has been simulated with several choices of the system
parameters. The results of this analysis are reported in Tab. 2.3. As we can see from the table,
for all the considered values of E [a(d)], the attack accuracy is in the order of 0.5 or less. Since
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Table 2.3: Values of η, obtained by numerical simulations, for several parameter choices.

n0 p dv t m DFR T E [a(d)] η

2 901 7 20 5 3.09 · 10−1 10 · 106 5.94 · 105 0.33

2 2, 003 11 33 5 1.36 · 10−1 4 · 106 1.3 · 105 0.45

3 1, 301 7 22 7 1.21 · 10−1 20 · 106 2.71 · 105 0.46

3 2, 549 13 22 9 5.52 · 10−2 30 · 106 9.74 · 104 0.51

4 947 7 15 7 1.01 · 10−1 30 · 106 1.65 · 105 0.32

4 4, 327 13 45 7 4.71 · 10−3 10 · 106 1.02 · 104 0.20

these values are all bigger than the threshold we have set, this provides further evidence that the
proposed approach guarantees security against reactions attacks of the type in [15].

On the basis of the analysis we developed, fixing â = 104 corresponds to an attack accuracy η . 0.5,
which prevents successful completion of the attack. This corresponds to an average lifetime of any
keypair in the order of T̂ = 104DFR−1 decrypted ciphertexts. For the DFR achieved by the
proposed LEDApkc instances, this corresponds to an average lifetime of any keypair in the order
of 1012 to 1013 decrypted ciphertexts.

To put this lifetime in perspective, consider the case, optimistic for an attacker, where he is able
to query the decryption oracle obtaining an answer after 40µs of decryption time (around 1000×
faster than the reference implementation) plus 30µs readout and transfer time (about the latency
of the loopback virtual network device in Linux). To collect 1013 answers from the oracle, the
attacker would need 7 · 10−5 · 1012 = 7 · 107s, i.e., about two years and two months of continuous
interaction with the decryption oracle before a rekeying must take place.

2.5 Properties of the cryptosystem

LEDApkc is obtained from a systematic McEliece cryptosystem with QC-LDPC codes. The advan-
tage of employing the IND-CCA2 conversion described in [23] is that it allows to reap the benefits
of a systematic representation of the code, with a limited performance overhead. We note that the
KI-γ conversion is proved to attain the IND-CCA2 property in the random oracle model on the ci-
phertexts output by the code-based cryptoscheme to which it is applied, but, as it was proposed for
algebraic decoding codes, it does not take into account the possibility of a decoding failure. Despite
this fact, in combination with the existence of decoding failures in QC-LDPC codes does not allow
us to claim the IND-CCA2 property for all the possible decoding instances, we note that, whenever
no decryption failure happens in our cryptoscheme, the security proof of [23] remains valid. Since
we work to minimize the occurrence of decoding failures and we void their usefulness for practical
attacks as we refresh the keypairs before an attacker may profit from the information given by a
decoding failure, we maintain that no worse practical security than an actual IND-CCA2 is achieved
by LEDApkc. We also note that, while the chosen KI-γ conversion is proven IND-CCA2 secure
in the random oracle model only, there are IND-CCA2 conversions for code based cryptosystems
which provide security in the standard model and may be fitted instead of the KI-γ in LEDApkc
(e.g., [13]). However, we note that the choice of the KI-γ conversion effectively prevents partial
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plaintext recovery attacks such as the ones described in [41], as the entire codeword should be
decoded correctly to produce a valid plaintext.

We note that, despite the linear nature of the QC-LDPC codes, the ciphertexts of LEDApkc
are not malleable since a portion of the codeword decoded by the McEliece cryptosystem during
the decryption primitive of LEDApkc is employed as an input to a cryptographically sound hash
function. As a consequence, unless the said function is vulnerable to preimage attacks, an attacker
will not be able to control at his will the output of the said function, even if given full control of
the input.
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Chapter 3

Implementation strategies and
performance analysis

3.1 Procedural description of the LEDApkc primitives

To the end of providing an efficient implementation of LEDApkc, we represented each circulant block
as a polynomial in F2[x]/〈xp+1〉 thanks to the isomorphism previously described. Consequentially,
all the involved block circulant matrices are represented as matrices of polynomials in F2[x]/〈xp+1〉.
The polynomials are materialized employing a bit-packed form of their binary coefficients in all the
cases where number of non null coefficients is high. In case a polynomial has a low number of non
null coefficients with respect to the maximum possible, i.e., its corresponding circulant matrix is
sparse, we represent it materializing only the positions of the one coefficients as integers.

The LEDApkc key generation algorithm is reported in Algorithm 3.1.1, which takes as input the
QC-LDPC code parameters and yields a private- and public-key pair. The first operation performed
by the algorithm is the extraction of a private key SK as a random value, rndPrivateMatricesSeed
generated from a TRNG (line 2 in Algorithm 3.1.1) and long enough to provide the desired security
margin when deriving the secret matrices H and Q. The approach adopted to generate both the 1×
n0 block matrix H and the n0×n0 block matrix Q is to expand the value rndPrivateMatricesSeed
employing the NIST provided seed expander built on AES-256-CTR to draw random position for
the asserted coefficients of the polynomials (blocks) of the matrices (line 2 in Algorithm 3.1.1). In
case a duplicate position is drawn, it is discarded and a fresh position is drawn anew. The weights
of the blocks of Q are designed in such a fashion that it is always invertible (see Section 1.2).
We evaluated that repeating this generation process does not have a significant impact on the
decryption phase, and thus opted to store only the value of rndPrivateMatricesSeed as the
cipher private key SK (line 11 in Algorithm 3.1.1). Indeed, the size of H and Q during the
computation of the decryption algorithm is still rather small, as their sparsity allows for a compact
representation in memory, where only the position of the one-valued coefficients are materialized.
Given the bit-sizes of the parameters of the cryptosystem, the positions can be materialized as
either 16-bit or 32-bit integers depending on the chosen values for n0 and p. The next step of the
key generation algorithm is to compute the 1 × n0 block matrix L = HQ = [L0, L1, . . . , Ln0−1]
(lines 3–6 in Algorithm 3.1.1). We recall that, given the choice of dv odd, and

∑n0−1
i=0 mi odd,

the invertibility of the last block of L, Ln0−1 is guaranteed a priori (see Section 1.2). Therefore,
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Algorithm 3.1.1: LEDApkc Keygen

Input: p, n0, n, k: QC-LDPC code parameters, where p denotes a circulant block size (in
bit), and n0 denotes the number of circulant blocks of the 1× n0 parity-check
matrix of the code. n = pn0 (bit) denotes the codeword size, while k = p(n0 − 1)
(bit) denotes the information word size.
dv: odd weight of each circulant block of the parity-check matrix

H = [H0 | H1 | . . . | Hn0−1] to be generated
[m0, . . . ,mn0−1]: weight of each block of the first row of the n0 × n0 circulant block

matrix Q =

 Q0,0 . . . Q0,n0−1

...
. . .

...
Qn0−1,0 . . . Qn0−1,n0−1

 to be generated – with

(
n0−1∑
i=0

mi

)
odd

Output: (SK,PK) generated private-key/public-key pair

1 rndPrivateMatricesSeed← TRNG()
2 H,Q← GenerateHQ(n0, dv, [m0, . . . ,mn0−1], rndPrivateMatricesSeed)
3 for i = 0 to n0 − 1 do
4 Li ← 0 // null polynomial in F2[x]/〈xp + 1〉
5 for j = 0 to n0 − 1 do
6 Li ← Li +HjQj,i // polynomial mul. and add. in F2[x]/〈xp + 1〉
7 LInv← ComputeInverse(Ln0−1) // multiplicative inverse in F2[x]/〈xp + 1〉
8 for i = 0 to n0 − 2 do
9 Mi ← LInvLi // polynomial multiplication in F2[x]/〈xp + 1〉

10 PK← [M0 | . . . |Mn0−2]
11 SK← rndPrivateMatricesSeed

12 return (SK,PK)

the computation of LInv = L−1
n0−1 is performed with a single call to the polynomial inversion

algorithm (line 7 in Algorithm 3.1.1). Finally, the public key PK is generated as a 1×n0− 1 block
matrix, [M0 | . . . | Mn0−2], through multiplying LInv by all-but-the-last blocks of L (lines 8–9 in
Algorithm 3.1.1). The last multiplication can be avoided as it will yield the identity matrix which
is thus not stored in the PK (line 10 in Algorithm 3.1.1).

The procedural description of the LEDApkc encryption transformation has been shown in Sec-
tion 1.2.1.

The procedural details about the LEDApkc decryption transformation have also been reported in
Section 1.2.1, expect for the fact that the actual implementation of the primitive, takes as input the
secret SK in the form of the seed extracted from a TRNG during the keypair generation, instead
of the values of the secret matrices H, Q. The decryption starts by computing the p× 1 syndrome,
sT , of the 1 × pn0 error vector e′ = eQT (see Section 1.2.1, and line 2 in Algorithm 1.2.2). This
syndrome corresponds to an error vector e′ with weight ≈ mt and is decoded efficiently via the
Q-decoder strategy described in Section 1.2.2.

To perform the required syndrome decoding, Qdecode starts by computing the number of unsat-
isfied parity checks in the current syndrome in the same way a standard bit flipping algorithm does
(lines 5−9 in Algorithm 3.1.2). Our approach to implement this computation is to exploit a sparse
representation for the transposition of the parity check matrix HT , which is taken as an input and
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Algorithm 3.1.2: Qdecode

Input: s: QC-LDPC syndrome, binary vector of size p
Htr: transposed parity-check matrix, represented as an n0 × dv integer matrix
containing the positions in {0, 1, . . . , p− 1} of the set coefficients in the n0 blocks of
HT = [HT

0 | HT
1 | . . . | HT

n0−1]

Qtr: private matrix, represented as an n0 ×m, m =
∑n0−1

i=0 mi integer matrix
containing the positions in {0, . . . , n0p− 1} of the asserted coefficients in QT rows

Output: e: the decoded error vector with size n0p
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding failure
LutS: piecewise constant function yielding the value of the bit flipping threshold of
similarity, given the syndrome weight.
It is represented as an array of (weight, threshold) pairs for all the boundary values of
the piecewise function.

1 iter← 0
2 repeat
3 unsat pc← [0 | . . . | 0] // array of n0p counters of unsatisfied parity checks

4 currSynd← s

5 for i = 0 to n0 − 1 do
6 for exp = 0 to p− 1 do
7 for h = 0 to dv − 1 do
8 if getBlockCoefficient(currSynd, (exp + Htr[i][h]) mod p) = 1 then
9 unsat pc[i · p+ exp]← unsat pc[i · p+ exp] + 1

10 w← max({w | (w, th) ∈ LutS ∧ w < weight(currSynd)})
11 th← th | (w, th) ∈ LutS

12 for i = 0 to n0 − 1 do
13 for exp = 0 to p− 1 do
14 similarity← 0
15 for k = 0 to m− 1 do

// qrow contains the positions of the ones of a row of Q rotated intra-block by j

16 qrow[k]← Qtr[i][k]− (Htr[i][k] mod p) + ((j + Qtr[i][k]) mod p)
17 similarity← similarity + unsat pc[qrow[k]]

18 if similarity ≥ th then
19 e[i · p+ j]← e[i · p+ j]⊕ 1
20 for k = 0 to m− 1 do
21 for h = 0 to dv − 1 do
22 idx← (Htr[qrow[k]/p][h] + (qrow[k] mod p)) mod p
23 s′[idx]← s′[idx]⊕ 1

24 iter← iter + 1

25 until s′ 6= 0 and iter < imax

26 if s′ = 0 then
27 return e, true
28 return e, false
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Table 3.1: Running times for key generation, encryption and decryption as a function of the chosen
category and number of circulant blocks n0 on an AMD Ryzen 5 1600 CPU at 3.2 GHz

Category n0
KeyGen Encrypt Decrypt

(ms) (ms) (ms)

1
2 45.30 (± 1.69) 3.11 (± 0.06) 20.87 (± 0.65)
3 20.96 (± 0.23) 3.10 (± 0.06) 25.18 (± 2.18)
4 17.99 (± 0.22) 3.94 (± 0.08) 28.30 (± 0.80)

2–3
2 198.49 (± 1.41) 12.06 (± 0.18) 62.55 (± 4.57)
3 100.39 (± 0.57) 13.06 (± 0.15) 57.58 (± 2.69)
4 72.78 (± 0.31) 14.18 (± 0.22) 59.75 (± 1.91)

4–5
2 558.84 (± 3.41) 33.96 (± 0.21) 115.36 (± 4.08)
3 298.91 (± 4.18) 37.28 (± 0.61) 116.93 (± 5.07)
4 208.90 (± 0.71) 39.85 (± 0.25) 157.23 (± 4.18)

denoted as Htr in the algorithm. This, in turn, allows to reduce the number of iterations of the
innermost loop of the parity check computation (lines 7–9 in Algorithm 3.1.2) from n0p

machine word

to dv. For example, considering the case of n0 = 2, p = 25931 on the NIST reference platform
(machine word = 64) the number of iterations drops from 811 to 17.

The differentiating point between the classical bit flipping algorithm and the Q-decoding concerns
how the bits of the codeword being decoded are selected for flipping. Indeed, while employing
a classical bit flipping algorithm would flip all the positions in e′ having the highest number of
unsatisfied parity checks, the Q-decoder exploits the knowledge of the secret matrix QT to estimate
if a bit flip should be performed. To this end, the Q-decoding computes, for each bit of e being
decoded (lines 12–13 in Algorithm 3.1.2) a measure of similarity between the patterns of ones of
a row of QT , blockwise cyclically shifted by the position of the bit of e itself, and the unsatisfied
parity checks vector. If the similarity metric (lines 14–16 in Algorithm 3.1.2) is above a given
threshold, both the error vector e and the value of the syndrome s for the next iteration iter

are updated (lines 18–23 in Algorithm 3.1.2). The value of the aforementioned threshold can be
obtained as a piecewise constant function of the current syndrome weight and the code parameters.
For efficiency reasons, the function is precomputed and stored as a lookup table (LutS) containing
pairs (weight, threshold). The Q-decoder computes the weight of the syndrome and determines
the highest weight w̄ among the ones in the lookup table, which does not exceed the one of the
syndrome (line 10 in Algorithm 3.1.2). The threshold for the similarity is selected as the one paired
to w̄ in LutS (line 11 in Algorithm 3.1.2).

3.2 Benchmarks on a NIST compliant platform

We provide the results of a set of execution time benchmarks performed on the reference imple-
mentation provided in the submission package. Currently, no platform specific optimizations are
in place, thus we expect these results to be quite consistent across different platforms.

The results were obtained measuring the required time for key generation, encryption and de-
cryption as a function of the chosen security category and number of circulant blocks n0. The
measurements reported are obtained as the average of 100 executions of the reference implementa-
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Table 3.2: Sizes of the keypair, plaintext and ciphertext as a function of the chosen category and
number of circulant blocks n0

Category n0
Private Key Size (B) Public Key Max Plaintext Ciphertext

At rest In memory size (B) size (B) size (B)

1
2 24 668 3, 480 3, 690 6, 960
3 24 844 4, 688 4, 813 7, 032
4 24 1, 036 6, 408 6, 496 8, 544

2–3
2 32 972 7, 200 7, 558 14, 400
3 32 1, 196 10, 384 10, 608 15, 576
4 32 1, 364 13, 152 13, 320 17, 536

4–5
2 40 1, 244 12, 384 12, 897 24, 768
3 40 1, 548 18, 016 18, 336 27, 024
4 40 1, 772 22, 704 22, 955 30, 272

tion compiled with gcc 6.3.0 from Debian 9 amd64. Given the NIST requirement on the reference
computing platform (an Intel x86 64 CPU) we instructed gcc to employ the most basic instruction
set among the ones fitting the description (-march=nocona option). The generated binaries were
run on an AMD Ryzen 5 1600 CPU at 3.2 GHz, locking the frequency scaling to the top frequency.
Table 3.1 reports the running times measured employing the clock gettime primitive, selecting the
CLOCK PROCESS CPUTIME ID as the timer of choice, obtaining the CPU time taken by the process.
As it can be noticed, the most computationally demanding primitive is the key generation, which
has more than 80% of its computation time taken by the execution of a single modular inverse in
F2[x]/〈xp+ 1〉 required to obtain the value of L−1

n0−1. The encryption primitive is the fastest among
all, and its computation time is dominated (> 93%) by the polynomial multiplications performing
the encryption. The decryption primitive computation is dominated by the Q-decoder computation
(> 90% of the time), with the remaining portion of the computation portion taken by the sparse
modular multiplications which reconstruct L and the one to compute the private syndrome fed into
the Q-decoder. The time required in both encryption and decryption to perform the KI-γ padding
on the plaintext, and the constant weight encoding take a definitely small amount of time in both
cases. Table 3.2 reports the sizes of both the keypairs and the encapsulated secrets for LEDApkc.
In particular, regarding the size of the private keys of LEDApkc we report both the size of the stored
private key, i.e. the size of the rndPrivateMatricesSeed extracted from the system TRNG, and the
required amount of main memory to store the expanded key during the decryption phase. We note
that the private key sizes are the minimum possible, as the rndPrivateMatricesSeed extracted
from the system TRNG should be incompressible. We employ as a rndPrivateMatricesSeed size
of 192, 256 and 320 bits for security categories 1, 3, and 5, respectively, to provide a simple hedging
against multi key attacks, as suggested on the NIST forum, and in the NIST frequently asked
questions section of the call. We note that, for a given security category, increasing the value of n0

enlarges the public key, as it is constituted of (n0 − 1)p bits. This increase in the size of the public
key however, enhances the underlying code rate, in turn allowing to encrypt larger plaintexts.

Possible optimizations. Starting from the platform-agnostic reference implementation provided
in this submission, a number of optimizations can be applied to improve the running time of
LEDApkc. First of all, implementing a sub-quadratic multiplication for the elements of F2[x]/〈xp+
1〉, for which the best candidate for the NIST reference platform appears to be the Toom-Cook
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Figure 3.1: Percentage of decoded messages as a function of the number of iterations taken to the
Q-decoder to converge

method in either its Toom-3 or its Toom-4 variant [10], is expected to reduce the time required to
compute the encryption primitive quite significantly. The optimal choice of the Toom-Cook variant
will also be dependent on the availability on the underlying CPU of binary polynomial multipli-
cation instructions, also known as carryless multiplications. Indeed, such instructions, present on
both modern x84 64 and ARM ISAs provide significant speedups in single-precision binary poly-
nomial multiplication.
Providing a specialized procedure for the modular inverse in F2[x]/〈xp + 1〉, where both the guar-
anteed invertibility of the element at hand, and the low weight nature of the modulus are taken
into account is expected to provide a significant speedup to the key generation phase, which is
dominated by a single instance of such computation.
Finally, exploiting the presence of vector instructions to perform modular addition will also pro-
vide performance boosts, as it provides an effective way of exploiting the large amount of data
parallelism present in the computational primitives employed.

3.3 Protection against side-channel attacks

The two most common side channels exploited to breach practical implementations of cryptosys-
tems are the execution time of the primitive and the instantaneous power consumption during
its computation. In particular, in [14], it was shown how a QC-LDPC code-based system can
be broken by means of simple power analysis, exploiting the control-flow dependent differences of
the decoding algorithm examined. Furthermore, [33] provides the first practical evidence of a side
channel attack relying on differential power analysis to extract the positions of the ones in the pri-
vate parity-check matrix, hence exploiting dataflow dependencies. However, linear error correcting
codes are amenable to extremely efficient countermeasures against power consumption-based side
channel attacks due to the linear nature of the operations involved in the decoding process. Indeed,
the same [33] provided a simple, but effective, countermeasure against differential power analysis
through adding a random codeword to the input vector before computing the syndrome. Such a
countermeasure against side channel attacks can be readily employed in LEDApkc. However, it may
be possible to employ profiled side channel attack techniques to overcome this layer of protection,
and against which the linearity of error correcting codes may be again exploited to devise efficient
countermeasures.
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Concerning execution time side channel information leakage, the main portion of the LEDApkc
decryption algorithm which is not characterized by a constant execution time is decoding. Indeed,
the number of iterations made by the decoder depends on the values being processed. Willing to
provide a first quantitative estimate of the information leakage stemming by such a timing varia-
tion, Figure 3.1 reports the percentage of decoding actions taking a given number of iterations to
perform a correct decode action during our DFR characterization campaign, i.e., over at least 108

decoding actions for each category/n0 value pair. As it can be seen, the vast majority of decoding
actions are completed in the same number of iterations. To provide a quantitative estimate of the
information which may be obtained, we note that, considering the number of iterations required
to perform a decode action as a random variable over the integers, and considering the frequencies
divided by the total amount of decoding actions as a rough estimate of the actual probabilities,
we obtain that the entropy of the random variables considered is between 0.21 and 0.01 bits per
symbol, which is a quite limited amount of information. Nonetheless, it is possible to achieve a
constant time decoding simply modifying the algorithm so that it always run for the maximum
needed amount of iterations to achieve the desired DFR. Such a choice completely eliminates the
timing leakage, albeit trading it off for a performance penalty. A final note concerning the timing
side channel leakage is that the Kobara-Imai decryption procedure should be implemented in such
a fashion that does not leak on a timing side channel whether or not a decryption failure is due to
a decoding failure.

3.4 Known Answer Test values

Known answer tests generated for 100 runs of LEDApkc can be found in the KAT directory of the
submission package. The naming convention of the req/rsp file pairs is the following:

PQCencryptKAT <private key size> <value of the n0 parameter>.req

PQCencryptKAT <private key size> <value of the n0 parameter>.rsp

In the following we report the SHA-2-256 digests of the KAT files, as obtainable via sha256sum or
an analogous tool.

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_24_2.req

f943af7f210654d2823fe4e29b0ec6d4a44062a357968a93a9dcefacb9f4fe20 PQCencryptKAT_24_2.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_24_3.req

f6348df2f5f53800a5601d62aa3290e200846a3e7fbc5f6e183c8810d12cb29d PQCencryptKAT_24_3.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_24_4.req

7e869287e6392a95ca1453a2b5f9c691520759088457ce88861770c927c846ec PQCencryptKAT_24_4.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_32_2.req

174b2a211e6ec450fa5d1f4818c9f078285db0f45272a9946986c9bd1c8f071e PQCencryptKAT_32_2.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_32_3.req

59d285b4d270547ba654b4e0dfd5fc838a16d8f3d53a3e38eeb2e1eb3a93fc32 PQCencryptKAT_32_3.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_32_4.req

114cc442a861a926c46652888447953192ba7519dcef1ac8eaecb9d447231809 PQCencryptKAT_32_4.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_40_2.req

952099040ebbf023b696b39eef87b1adb8d99d4f61dd5794a92e183988fa4138 PQCencryptKAT_40_2.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_40_3.req

efb830e12b1a4de3707b1149950d81ffcb9977f0213fa4a38873349cbaf01750 PQCencryptKAT_40_3.rsp

0b4ca0d418899e365559f4ceb0b4abbe876e7764e543dc3228f3bf8abdf22c6c PQCencryptKAT_40_4.req

c74d618812f36d28ad28dce0b0858ff2bdd8e0e96ee04e39a3b1093ee641dede PQCencryptKAT_40_4.rsp
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Summary of advantages and
limitations

+ Built on an NP-complete problem under reasonable assumptions.

+ Exploits improved BF decoders which are faster than classical BF decoders.

+ Compact keypairs (below 23 kiB at most), minimum size private keys.

+ Requires only addition and multiplication over F2[x], and modular inverse over F2[x]/〈xp + 1〉 besides
single-precision integer operations.

+ Fully patent free, self contained, public domain codebase written in ANSI-C99.

+ Easy to integrate in existing cryptographic libraries.

+ Particularly efficient to apply countermeasures against non-profiled power consumption and electro-
magnetic emissions side channel attacks.

− Subject to reaction attacks of the type in [15], which do not apply if the life of any keypair is limited
according to a given and simple criterion, yielding a secure lifetime of any keypair in the order of 1012

or more decrypted ciphertexts.
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evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my cryptosys-
tem from consideration for standardization. If my cryptosystem (or the derived cryptosystem) is removed
from consideration for standardization or withdrawn from consideration by all submitter(s) and owner(s), I
understand that rights granted and assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use
rights of the reference and optimized implementations, may be withdrawn by the submitter(s) and owner(s),
as appropriate.

Signed:

Title:

Date:

Place:



Statement by Reference/Optimized Implementations’ Owner(s)

I, Alessandro Barenghi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria
(DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, am one of the owners of the submitted reference imple-
mentation and optimized implementations and hereby grant the U.S. Government and any interested party the
right to reproduce, prepare derivative works based upon, distribute copies of, and display such implementations
for the purposes of the post-quantum algorithm public review and evaluation process, and implementation if
the corresponding cryptosystem is selected for standardization and as a standard, notwithstanding that the
implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:



Statement by Each Submitter

I, Franco Chiaraluce, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as LEDApkc, is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I further declare that
I do not hold and do not intend to hold any patent or patent application with a claim which may cover
the cryptosystem, reference implementation, or optimized implementations that I have submitted, known as
LEDApkc.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public for review and
will be evaluated by NIST, and that it might not be selected for standardization by NIST. I further acknowledge
that I will not receive financial or other compensation from the U.S. Government for my submission. I
certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications which
may cover my cryptosystem, reference implementation or optimized implementations. I also acknowledge
and agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard, modify my
submitted cryptosystem’s specifications (e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the draft standards
for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any patent
or patent application identified to cover the practice of my cryptosystem, reference implementation or opti-
mized implementations and the right to use such implementations for the purposes of the public review and
evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my cryptosys-
tem from consideration for standardization. If my cryptosystem (or the derived cryptosystem) is removed
from consideration for standardization or withdrawn from consideration by all submitter(s) and owner(s), I
understand that rights granted and assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use
rights of the reference and optimized implementations, may be withdrawn by the submitter(s) and owner(s),
as appropriate.

Signed:

Title:

Date:

Place:



Statement by Reference/Optimized Implementations’ Owner(s)

I, Franco Chiaraluce, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted reference
implementation and optimized implementations and hereby grant the U.S. Government and any interested
party the right to reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation process, and
implementation if the corresponding cryptosystem is selected for standardization and as a standard, notwith-
standing that the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:



Statement by Each Submitter

I, Gerardo Pelosi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria
(DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, do hereby declare that the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as LEDApkc, is my own orig-
inal work, or if submitted jointly with others, is the original work of the joint submitters. I further declare
that I do not hold and do not intend to hold any patent or patent application with a claim which may cover
the cryptosystem, reference implementation, or optimized implementations that I have submitted, known as
LEDApkc.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public for review and
will be evaluated by NIST, and that it might not be selected for standardization by NIST. I further acknowledge
that I will not receive financial or other compensation from the U.S. Government for my submission. I
certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications which
may cover my cryptosystem, reference implementation or optimized implementations. I also acknowledge
and agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard, modify my
submitted cryptosystem’s specifications (e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the draft standards
for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any patent
or patent application identified to cover the practice of my cryptosystem, reference implementation or opti-
mized implementations and the right to use such implementations for the purposes of the public review and
evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my cryptosys-
tem from consideration for standardization. If my cryptosystem (or the derived cryptosystem) is removed
from consideration for standardization or withdrawn from consideration by all submitter(s) and owner(s), I
understand that rights granted and assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use
rights of the reference and optimized implementations, may be withdrawn by the submitter(s) and owner(s),
as appropriate.

Signed:

Title:

Date:

Place:



Statement by Reference/Optimized Implementations’ Owner(s)

I, Gerardo Pelosi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria
(DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, am one of the owners of the submitted reference
implementation and optimized implementations and hereby grant the U.S. Government and any interested
party the right to reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation process, and
implementation if the corresponding cryptosystem is selected for standardization and as a standard, notwith-
standing that the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:



Statement by Each Submitter

I, Paolo Santini, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione (DII),
Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, reference imple-
mentation, or optimized implementations that I have submitted, known as LEDApkc, is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I further declare that
I do not hold and do not intend to hold any patent or patent application with a claim which may cover
the cryptosystem, reference implementation, or optimized implementations that I have submitted, known as
LEDApkc.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public for review and
will be evaluated by NIST, and that it might not be selected for standardization by NIST. I further acknowledge
that I will not receive financial or other compensation from the U.S. Government for my submission. I
certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications which
may cover my cryptosystem, reference implementation or optimized implementations. I also acknowledge
and agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard, modify my
submitted cryptosystem’s specifications (e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the draft standards
for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any patent
or patent application identified to cover the practice of my cryptosystem, reference implementation or opti-
mized implementations and the right to use such implementations for the purposes of the public review and
evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my cryptosys-
tem from consideration for standardization. If my cryptosystem (or the derived cryptosystem) is removed
from consideration for standardization or withdrawn from consideration by all submitter(s) and owner(s), I
understand that rights granted and assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use
rights of the reference and optimized implementations, may be withdrawn by the submitter(s) and owner(s),
as appropriate.

Signed:

Title:

Date:

Place:



Statement by Reference/Optimized Implementations’ Owner(s)

I, Paolo Santini, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione (DII),
Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted reference implementa-
tion and optimized implementations and hereby grant the U.S. Government and any interested party the right
to reproduce, prepare derivative works based upon, distribute copies of, and display such implementations for
the purposes of the post-quantum algorithm public review and evaluation process, and implementation if
the corresponding cryptosystem is selected for standardization and as a standard, notwithstanding that the
implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:


