
Name of the proposed cryptosystem

LEDAkem (Low dEnsity coDe-bAsed key encapsulation mechanism)

Submitters

This submission is from the following team, listed in alphabetical order:
• Marco Baldi, Università Politecnica delle Marche, Ancona, Italy
• Alessandro Barenghi, Politecnico di Milano, Milano, Italy
• Franco Chiaraluce, Università Politecnica delle Marche, Ancona, Italy
• Gerardo Pelosi, Politecnico di Milano, Milano, Italy
• Paolo Santini, Università Politecnica delle Marche, Ancona, Italy

E-mail addresses: m.baldi@univpm.it, alessandro.barenghi@polimi.it, f.chiaraluce@univpm.it,
gerardo.pelosi@polimi.it, p.santini@pm.univpm.it.

Contact telephone and address

Marco Baldi (phone: +39 071 220 4894), Università Politecnica delle Marche, Dipartimento di
Ingegneria dell’Informazione (DII), Via Brecce Bianche 12, I-60131, Ancona, Italy.

Names of auxiliary submitters

There are no auxiliary submitters. The principal submitter is the team listed above.

Name of the inventors/developers of the cryptosystem

Same as submitter.

Name of the owner, if any, of the cryptosystem

Same as submitter.

Backup contact telephone and address

Gerardo Pelosi (phone: +39 02 2399 3476), Politecnico di Milano, Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy.

Signature of the submitter

×

See also printed version of “Statement by Each Submitter”.

LEDAkem: Low dEnsity coDe-bAsed key encapsulation mechanism
Specification revision 1.0 – November 30, 2017

Contents

1 Complete written specification 5

1.1 Preliminaries . 5

1.1.1 Linear error correcting codes . 5

1.1.2 Quasi-Cyclic codes and circulant matrices . 7

1.1.3 Polynomial inversion in a finite field . 8

1.1.4 Quasi-Cyclic Low-Density Parity-Check codes and their efficient decoding . . 10

1.2 Niederreiter cryptosystem . 12

1.3 The LEDAkem cryptosystem . 13

1.3.1 Description of the Primitives . 14

1.3.2 An efficient decoding algorithm for LEDAkem 17

1.3.3 Choice of the Q-decoder decision thresholds 19

2 Security Analysis 22

2.1 Hardness of the underlying problem . 22

2.2 Analysis of the algorithm with respect to known attacks 23

2.3 System parameters for the required security categories 25

2.4 Properties of the cryptosystem . 27

3 Implementation strategies and performance analysis 29

3.1 Procedural description of the LEDAkem primitives 29

3.2 Benchmarks on a NIST compliant platform . 34

3.3 Protection against side-channel attacks . 36

3.4 Known Answer Tests (KAT) values . 37

4 Summary of advantages and limitations 38

3

LEDAkem

Bibliography 39

Page 4

Chapter 1

Complete written specification

LEDAkem is a Key Encapsulation Module (KEM) built from the Niederreiter cryptosystem based
on linear error-correcting codes. In particular, LEDAkem exploits the advantages of relying on
Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes providing high decoding speeds and
compact keypairs [4, 5], with two main innovations:

i. The use of ephemeral keys is employed to foil statistical attacks such as the one reported
in [14].

ii. A new decoding algorithm is designed: it provides faster decoding than the regular bit-flipping
decoding procedure, saves a computationally demanding matrix inverse computation, and
allows a reduction in the required private key storage.

The main known attacks against this system are those applicable against QC-LDPC code-based
cryptosystems [4], which have been studied for ten years since the first proposal appeared in [3], plus
statistical attacks recently introduced in [14,18]. We carefully analyze their capabilities and provide
parametrization for the LEDAkem system to provide the required security guarantees taking into
account the computational cost reduction of solving the underlying computationally hard problem
caused by such attacks.

1.1 Preliminaries

We now provide a set of background notions and nomenclature concerning binary error correcting
codes, and in particular Low-Density Parity-Check codes, which are the foundational constructs of
LEDAkem.

1.1.1 Linear error correcting codes

Binary error correcting codes rely on a redundant representation of information in the form of
binary strings to be able to detect and/or correct accidental bit errors which may happen during
transmission or storage. We will employ binary codes acting on a finite binary sequence at once,
known as the information word, which are known as block codes. We will refer to them from now

5

LEDAkem

on simply as binary codes.
In this setting, let F2 be the binary finite field with the addition and multiplication operations
which corresponds to the usual exclusive-or and logical product between two Boolean values. Let
Fk2 denote the k-dimensional vector space defined on F2. A binary code, denoted as C (n, k), is
defined as a bijective map C (n, k) : Fk2 → Fn2 , n, k ∈ N, 0 < k < n, between any binary k-tuple
(i.e., an information word) and a binary n-tuple (denoted as codeword). The value n is known as
the length of the code, while k is denoted as its dimension.
Encoding through C (n, k) means converting an information word u ∈ Fk2 into its corresponding
codeword c ∈ Fk2. The decoding process, instead, given a codeword ĉ corrupted by an error vector
e ∈ Fk2 with Hamming weight t > 0 (ĉ = c + e), recovers both the value of the information word
u and the value of the error vector e. A code is said to be t-error correcting if, for any value of e,
given c̃ there is a decoding procedure to retrieve both the error vector e and the original information
word u.

Definition 1.1.1 (Linear Code) The code C (n, k) is linear if and only if the set of its 2k code-
words is a k-dimensional subspace of the vector space Fn2 .

A property of linear block codes that follows from Definition 1.1.1 is that the sum modulo 2, i.e.,
the component wise exclusive-or, of two codewords is also a codeword.

Definition 1.1.2 (Minimum distance) Given a linear binary code C (n, k), the minimum dis-
tance of C (n, k) is the minimum Hamming distance among all the ones which can be computed
between a pair of its codewords.

If the code is linear, its minimum distance coincides with the minimum Hamming weight among
the ones of its codewords. Given C (n, k), a linear error correcting code, and Γ ⊂ Fn2 the vector
subspace containing its 2k codewords, it is possible to represent it choosing k linearly independent
codewords {g0, g1, . . . gk−1} ∈ Fn2 to form a basis of Γ. Any codeword c = [c0, c1, . . . , cn−1] can be
expressed as a linear combination of the vectors of the basis:

c = u0g0 + u1g1 + . . .+ uk−1gk−1 (1.1)

where the binary coefficients ui can be thought as the element of an information vector u =
[u0, u1, . . . , uk−1], which the code maps into c. Equation (1.1) can be rewritten as c = uG, where
G is a k × n binary matrix known as the generator matrix of the code C (n, k), i.e.:

G =

g0

g1
...

gk−1

Since any set of k linearly independent codewords can be used to form G, a code can be represented
by different generator matrices. Among the possible representations, it is always possible for a linear
code to derive a representation known as systematic.

Definition 1.1.3 (Systematic Code) A linear error correcting code C (n, k) is said to be in a
systematic form, or systematic in short, if each one of its codewords contains the information vector
it is associated to.

Page 6

LEDAkem

A conventional way to express a systematic code is the one where each n-bit codeword, c, is obtained
by appending r = n− k redundancy bits (ck, ck+1, . . . , cn−1) to its corresponding k-bit information
word (i.e., c0, c1, . . . , ck−1, with ci = ui, 0 ≤ i < k): c = [u0, u1, . . . , uk−1|ck, ck+1, . . . , cn−1]. It
follows that the associated k × n generator matrix G can be written as G = [Ik|P], where Ik
denotes the k × k identity matrix and P is a k × r binary matrix.
Let us consider the set of all n-bit vectors in Fn2 that are orthogonal to any codeword of the code
subspace Γ, known as its orthogonal complement Γ⊥. Its dimension is dim

(
Γ⊥
)

= n − dim (Γ) =

n− k = r. A basis of Γ⊥ is readily obtained choosing r linearly independent vector in Γ⊥ as

H =

h0

h1
...

hr−1

The r × n matrix H is known as a parity-check matrix of the code C (n, k), while, for any n-bit
vector x ∈ Fn2 , the r × 1 vector s = HxT is known as the syndrome of x through H. Given that
H is a basis of Γ⊥, every codeword c ∈ Γ satisfies the equality HcT = 0r×1 where 0r×1 is the r × 1
zero vector, i.e., a codeword belonging to C(n, k) has a null syndrome through H.

It can be shown that the generator matrix G and the parity-check matrix H are two equivalent
descriptions of a linear code. Indeed, we have that HcT = HGTuT = 0r×1, ∀u ∈ Fk2, yielding in
turn that HGT = 0r×k. Exploiting the aforementioned relation, it is possible to derive H from
G and vice-versa. Consider, for the sake of clarity, the case of a systematic code C(n, k) with
G = [Ik|P]. It is possible to obtain the corresponding parity-check matrix H as

[
P T |Ir

]
, where

T denotes transposition, which satisfies HGT = P T + P T = 0r×k. Finally, considering a generic
parity-check matrix H = [A|B], with A an r × k matrix and B an r × r non-singular matrix, a

systematic generator matrix of the corresponding code is computed as G =
[
Ik|
(
B−1A

)T]
.

1.1.2 Quasi-Cyclic codes and circulant matrices

A Quasi-Cyclic (QC) code is defined as a linear block code C(n, k) having information word size
k = pk0 and codeword size n = pn0, where n0 is denoted as basic block length of the code and each
cyclic shift of a codeword by n0 symbols results in another valid codeword [38].
LEDAkem hinges on a QC code C(pn0, pk0) having the generator and parity-check matrices com-
posed by p× p circulant sub-matrices (blocks).

A v × v circulant matrix A has the following form:

A =

a0 a1 a2 · · · av−1

av−1 a0 a1 · · · av−2

av−2 av−1 a0 · · · av−3
...

...
...

. . .
...

a1 a2 a3 · · · a0

 (1.2)

According to its definition, any circulant matrix has a constant row and column weight, i.e., is
regular, since all its rows and columns are cyclic shifts of the first row and column, respectively.

The set of v × v binary circulant matrices forms an algebraic ring under the standard operations
of modulo-2 matrix addition and multiplication. The zero element is the all-zero matrix, and the

Page 7

LEDAkem

identity element is the v × v identity matrix. The algebra of the polynomial ring F2[x]/〈xv + 1〉 is
isomorphic to the ring of v × v circulant matrices over F2 with the following map:

A↔ a (x) =
v−1∑
i=0

aix
i (1.3)

According to (1.3), any binary circulant matrix is associated to a polynomial in the variable x
having coefficients over F2 which coincide with the entries in the first row of the matrix

a (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ av−1x
v−1 (1.4)

In addition, according to eq. (1.3), the all-zero circulant matrix corresponds to the null polynomial
and the identity matrix to the unitary polynomial.

The ring of polynomials F2[x]/〈xv + 1〉 includes elements that are zero divisors: such elements
are mapped onto singular circulant matrices over F2. Avoiding such matrices is important in the
computation of the LEDAkem primitives, as computing the inverse of v × v circulant matrices is
required. However, a proper selection of the size of a circulant matrix v, allows to easily generate
invertible instances of it as described in the following.

1.1.3 Polynomial inversion in a finite field

To provide efficient execution for the LEDAkem primitives, it is crucial to be able to efficiently
check invertibility of a binary circulant matrix, and to generate a non-singular circulant matrix
efficiently. To this end, we exploit the isomorphism (1.3) between p × p binary circulant matrices
and polynomials in F2[x]/〈xp + 1〉, turning the problem into providing an efficient criterion for
the invertibility of an element of F2[x]/〈xp + 1〉 and providing an efficient way to generate such
invertible polynomials. In the following, we recall some facts from finite field theory, and we derive
a necessary and sufficient condition for the invertibility of an element of F2[x]/〈xp + 1〉, provided p
is chosen according to the described criterion. Let Fqm be a finite field, with q a prime power and
m a positive integer; given an element α ∈ Fqm , the following propositions hold [39]:

(i) The minimal polynomial of α with respect to Fq, i.e., the nonzero monic polynomial f(x) ∈
Fq[x] of the least degree such that f(α) = 0, always exists, it is unique, and it is also irreducible
over Fq.

(ii) If a monic irreducible polynomial g(x) ∈ Fq[x] has α ∈ Fqm as a root, then it is the minimal
polynomial of α with respect to Fq.

Definition 1.1.4 Let n be a positive integer and q a prime power such that gcd(n, q) = 1. A
cyclotomic coset of q modulo n containing the value a ∈ Zn is defined as

Ca = {aqj mod n : j = 0, 1, . . .}

A subset {a1, . . . , as} ⊆ Zn is named as a complete set of representatives of cyclotomic cosets of q

modulo n if ∀ i 6= j Cai ∩ Caj = ∅ and
s⋃
j

Caj = Zn.

Page 8

LEDAkem

It is worth noting that the previous definition allows to easily infer that two cyclotomic cosets are
either equal or disjoint. Indeed, given two cyclotomic cosets Ca1 and Ca2 , with a1 6= a2 mod n, if
Ca1 ∩Ca2 6= ∅, two positive integers j and k such that a1q

j = a2q
k mod n should exist. Assuming

(without loss of generality) that k ≥ j, the condition gcd(n, q) = 1 would ensure the existence of the
multiplicative inverse of q and consequentially that a1 = a2q

k−j mod n, which in turn would imply
that the cyclotomic coset including a1 is a subset of the coset including a2, i.e., Ca1 ⊆ Ca2 . However,
as the previous equality can be rewritten as a2 = a1(q−1)k−j mod n, it would also imply Ca2 ⊆ Ca1 ,
leading to conclude that a1 = a2 mod n, which is a contradiction of the initial assumption about
them being different.

Two notable theorems that make use of the cyclotomic coset definition to determine the minimal
polynomials of every element in a finite field can be stated as follows [39].

Theorem 1.1.1 Let α be a primitive element of Fqm , the minimal polynomial of αi in Fq[x] is

g(i)(x) =
∏
j∈Ci

(x− αj), where Ci is the unique cyclotomic coset of q modulo qm − 1 containing i.

Theorem 1.1.2 Given a positive integer n and a prime power q, with gcd(n, q) = 1, let m be
a positive integer such that n | (qm − 1). Let α be a primitive element of Fqm and let g(i)(x) ∈
Fq[x] be the minimal polynomial of αi ∈ Fqm . Denoting as {a1, . . . , as} ⊆ Zn a complete set of
representatives of cyclotomic cosets of q modulo n, the polynomial xn − 1 ∈ Fq[x] can be factored
as the product of monic irreducible polynomials over Fq:

xn − 1 =

s∏
i=1

g

(
(qm−1)ai

n

)
(x)

Corollary 1.1.1 Given a positive integer n and a prime power q, with gcd(n, q) = 1, the number
of monic irreducible factors of xn − 1 ∈ Fq[x] is equal to the number of cyclotomic cosets of q
modulo n.

From the previous propositions on the properties of finite fields, it is possible to derive the following
results:

Corollary 1.1.2 Given an odd prime number p, if 2 is a primitive element in the finite field
Zp then the irreducible (non trivial) polynomials being a factor of xp − 1 ∈ F2[x] are x + 1 and
Φ(x) = xp−1 + xp−2 + · · ·+ x+ 1.

Proof. Considering the ring of polynomials with binary coefficients F2[x] and picking a positive
integer n as an odd prime number (i.e., n = p), Corollary 1.1.1 ensures that the number of factors
of xp − 1 ∈ F2[x] equals the number of cyclotomic cosets of 2 modulo p.
If 2 is a primitive element of Zp, its order, ordp(2), is equal to the order of the (cyclic) multiplicative
group of the field, i.e., ordp(2) = | (Zp \ {0}, ·) | = p − 1 thus, the said cyclotomic cosets can be
listed as: C0 = {0 · 2j mod p : j = 0, 1, . . . } = {0} and C1 = {1 · 2j mod p : j = 0, 1, . . . } = Zp \ {0}.
The polynomial xp − 1 ∈ F2[x] admits α = 1 as a root, therefore its two (non trivial) factors can
be listed as: x− 1 and xp−1

x−1 = xp−1 + xp−2 + · · ·+ x+ 1.

Theorem 1.1.3 (Invertible elements in F2[x]/〈xp + 1〉) Let p be a prime number such that
ordp(2) = p− 1. Let g(x) be a binary polynomial in F2[x]/〈xp + 1〉, with deg(g(x)) > 0.
g(x) has a multiplicative inverse in F2[x]/〈xp + 1〉 if and only if it contains an odd number of terms
and g(x) 6= Φ(x), with Φ(x) = xp−1 + xp−2+ · · ·+ x+ 1.

Page 9

LEDAkem

Proof. If g(x) ∈ F2[x]/〈xp + 1〉 contains an odd number of terms and g(x) 6= Φ(x), to prove it is
invertible modulo xp + 1 we need to consider that gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)).
It is easy to observe that x + 1 does not divide g(x), i.e., (x + 1) - g(x), as g(1) = 1, thus they
are coprime. Considering Φ(x), we know by hypothesis that ordp(2) = p − 1, therefore Φ(x) is
irreducible over F2[x] (see Corollary 1.1.2), which excludes that g(x) | Φ(x).
To the end of proving g(x) and Φ(x) coprime, it has to hold that Φ(x) - g(x). To this end
assume, by contradiction, that g(x)h(x) = Φ(x) for a proper choice of h(x) ∈ F2[x]. The previous
equality entails that deg(g(x)) + deg(h(x)) = p− 1, while deg(g(x)) ≤ p− 1, which in turn leaves
deg(h(x)) = 0 as the only option, leading to conclude h(x) = 0 or h(x) = 1. In case h(x) = 0,
the equality g(x) · 0 = xp−1 + xp−2 + · · · + x + 1 is false, while in case h(x) = 1, the equality
g(x) · 1 = Φ(x) contradicts the hypothesis. Since we proved that g(x) - Φ(x) and Φ(x) - g(x),
g(x) 6= Φ(x) by hypothesis, we can infer that they are coprime.
Finally, being gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)) = 1 we conclude that g(x) is invertible.

To prove the other implication of the theorem, if g(x) ∈ F2[x]/〈xp + 1〉, with degree deg(g(x)) > 0
is invertible we need to derive that g(x) must have an odd number of terms and be different from
Φ(x). Being g(x) invertible, this means that gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)) = 1, which
in turn means that gcd(g(x), x+ 1) = 1 and gcd(g(x),Φ(x)) = 1 that guarantees that g(x) 6= Φ(x)
and that g(1) = 1. Willing to prove that g(x) must have an odd number of terms, assume, by
contradiction, it has an even number of terms. Regardless of which terms are contained in g(x)
this means that it admits 1 as a root, which contradicts the premise.

1.1.4 Quasi-Cyclic Low-Density Parity-Check codes and their efficient decoding

A Low-Density Parity-Check (LDPC) code C (n, k) is a special type of linear block code charac-
terized by a sparse parity-check matrix H. In particular, the Hamming weight of a column of H,
denoted as dv, is much smaller than its column length r and increases sub-linearly with it. In
terms of error correction capability, LDPC codes having a non-constant weight for either the rows
or the columns of H, hence known as irregular LDPC codes, were proven to approach the channel
capacity [24]. Considering the parity-check matrix H of an LDPC code as the incidence matrix
of a graph, such a graph is known as Tanner graph, and it has been shown that the presence of a
small number of short cycles in it is beneficial to the error correction performance of the code.

The peculiar form of LDPC codes allows to devise an efficient decoding procedure, provided their
parity-check matrix H is known, via algorithms known as Bit Flipping (BF) decoders [16]. Indeed,
BF algorithms perform decoding with a fixed-point procedure which exploits the form of H to
iteratively deduce which bits of an error-affected codeword should be flipped in order to obtain
a zero-valued syndrome for it. If the fixed-point procedure converges within a desired amount of
iterations to a zero-valued syndrome, the decoding action is deemed successful.

The main observation of the BF decoders starts from considering the parity-check matrix H as the
description of a set of r equations in the codeword bits yielding the syndrome bits as their results.
Such equations are known as parity-check equations, or parity checks, in short. In this context,
the one-valued coefficients of the i-th column of a parity-check matrix H can be thought of as the
indicators of which parity checks of the code are involving the i-th bit of the received codeword.
The result of each one of the said parity checks is a bit in the syndrome, hence a zero-valued
syndrome indicates a set of successful parity checks, and thus a correct codeword. The convergence
of the fixed-point decoder is influenced by the number of parity checks in which each codeword
entry is involved: in particular, being involved in a small number of parity checks speeds up the
convergence.

Page 10

LEDAkem

Algorithm 1.1.1: BF decoding

Input: x: QC-LDPC error-affected codeword as a 1× pn0 binary vector.
s: QC-LDPC syndrome. It is a pr0 × 1 binary vector obtained as s = HxT .

Hsparse: sparse version of the parity-check matrix H, represented as an
dv × n0 integer matrix containing for each of its n0 columns, the positions in
{0, 1, . . . , pr0 − 1} of the asserted binary coefficients in the first column of the
sequence of r0 circulant block matrices (each of which with size p× p).

Output: c: error-free 1× pn0 codeword
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding failure

1 codeword← x // bitvector with size pn0

2 syndrome← s // bitvector with size pr0

3 iterationCounter← 0 // scalar variable denoting the number of iterations

4 repeat
5 unsatParityChecks← 01×pr0 // counters of unsatisfied parity checks

6 for i = 0 to pn0 − 1 do
7 for j = 0 to dv − 1 do

8 assertedHbitPosition← (i+ Hsparse[j][i]) mod p+ p ·
⌊
Hsparse[j][i] div p

⌋
9 if syndrome[assertedHbitPosition] = 1 then

10 unsatParityChecks[i]← 1 + unsatParityChecks[i]

11 maxUPC← max(unsatParityChecks)

12 for i = 0 to pn0 − 1 do
13 if unsatParityChecks[i] = maxUPC then
14 BitToggle(codeword[i]) // codeword update

15 for j = 0 to dv − 1 do

16 assertedHbitPos← (i+ Hsparse[j][i]) mod p+ p ·
⌊
Hsparse[j][i] div p

⌋
17 BitToggle(syndrome[assertedHbitPos])

18 until syndrome 6= 01×pr0 and iter < imax

19 if syndrome = 01×pr0 then
20 return codeword, true
21 return codeword, false

An LDPC code may also be a QC code, expressed with a QC parity-check or generator matrix,
hence being named a QC-LDPC code, which is indeed the case of the codes employed in LEDAkem.

An efficient BF decoding procedure for QC-LDPC codes can be devised relying on the number
of unsatisfied parity checks to which a codeword bit concurs as an estimate of it being affected
by an error. We describe such a procedure in Algorithm 1.1.1, where the sparse and QC nature
of the matrix H is explicitly exploited. To this end H is represented as r0 × n0 sparse p × p
circulant blocks, and only the positions of the first column of each block are stored in Hsparse.
Algorithm 1.1.1 receives, alongside Hsparse, the error-affected codeword to be corrected x, its
syndrome computed as s = HxT , and performs the fixed-point decoding procedure for a maximum
of imax iterations. The algorithm outputs its best estimate for the correct codeword c and a
boolean variable decodeOk reporting the success of the decoding procedure. The procedure iterates
at fixed-point (loop at lines 4–18) the decoding procedure, which starts by counting how many

Page 11

LEDAkem

unsatisfied parity checks a codeword bit is involved into (lines 5–10). Such a value is obtained
considering which are the asserted bits in a given column of H, taking care of accounting for its
sparse representation, and the cyclic nature of its blocks (line 8). Whenever a bit in the i-th column
and assertedHbitPos-th row of H is set, it is pointing to the fact that the i-th bit of the codeword
is involved in the assertedHbitPos-th parity-check equation. Thus, if the assertedHbitPos-th bit
of the syndrome is unsatisfied, i.e., equal to 1, the number of unsatisfied parity checks of the i-th
bit is incremented (lines 9–10). Once the computation of the number of unsatisfied parity checks
per codeword bit is completed, a decision must be taken on which of them are to be flipped, as they
are deemed error affected. A possible criterion, yielding very good error correction performances at
the cost of a lower computational efficiency is to flip all the bits which are involved in the maximum
number of unsatisfied parity checks, computed at line 11. Thus, the procedure toggles the values of
all the codeword bits for which the number of unsatisfied parity checks matches the maximum one
(lines 12–14). Once this step is completed, the values of the parity checks should be recomputed
according to the new value of the codeword. While this can be accomplished by pre-multiplying
the transposed codeword by H, it is more efficient to exploit the knowledge of which bits of the
codeword were toggled to change only the parity-check values in the syndrome affected by such
toggles. Lines 15–17 of Algorithm 1.1.1 update the syndrome according to the aforementioned
procedure, i.e., for a given i-th codeword bit being toggled, all the syndrome values corresponding
to the positions of the asserted coefficients in the i-th column of H are also toggled. Once either the
decoding procedure has reached its intended fixed-point, i.e., the syndrome is a zero-filled vector,
or the maximum number of iterations has been reached, Algorithm 1.1.1 returns its best estimate
for the corrected codeword, together with the outcome of the decoding procedure (lines 19–21).

1.2 Niederreiter cryptosystem

The Niederreiter cryptosystem [29] is a code-based cryptosystem exploiting the same trapdoor
introduced in the McEliece cryptosystem [26], but under an alternative formulation. The main
difference between McEliece and Niederreiter is in that Niederreiter exploits syndromes and parity-
check matrices instead of codewords and generator matrices used in McEliece. The original proposal
of the Niederreiter cryptosystem used Generalized Reed-Solomon (GRS) codes as private codes,
which however have been shown to expose the system to vulnerabilities. Nevertheless, when the
same family of codes is used, Niederreiter and McEliece cryptosystems are equivalent [23] and
therefore they achieve the same security levels. Key generation, encryption and decryption in the
Niederreiter cryptosystem work as follows.

Key generation. In order to generate his key pair, Bob chooses two secret matrices:

i. The r × n parity-check matrix H of a linear block code able to correct t errors.

ii. A random non-singular r × r scrambling matrix S.

Bob’s private key is {H,S}, while his public key is computed as

H ′ = SH. (1.5)

It is worth observing that the rows of H ′ are linear combinations of the rows of H, representing the
parity-check equations of the private code. Therefore H ′ defines a public code that coincides with

Page 12

LEDAkem

the private code. However, the code representation through H ′ does not allow performing decoding
through efficient decoding algorithms, and decoding through general algorithms has exponential
complexity in the code length.

Encryption. In order to send an encrypted message m to Bob, Alice maps m into one or more
n-bit strings with weight t. Then, she uses Bob’s public key H ′ to obtain the encrypted version of
each weight-t string e as its syndrome computed through H ′, that is,

x = H ′eT = SHeT . (1.6)

Decryption. In order to decrypt each received message (or part of a message) x, Bob computes
the syndrome of e through H as

x′ = S−1x = HeT , (1.7)

then he performs syndrome decoding through the secret code to obtain e from x′. Finally, Bob
demaps e into the secret message m, or part of it.

In the original McEliece and Niederreiter cryptosystems, algebraic code families provided with
bounded-distance decoders were considered. In such a case, since the number of errors correctable
by the secret code is t, it is guaranteed that Bob is able to recover e from x′ and the Decryption
Failure Rate (DFR) is zero.

1.3 The LEDAkem cryptosystem

The LEDAkem cryptosystem is derived from the Niederreiter cryptosystem with the following main
differences:

• Non-algebraic QC-LDPC codes are used as private codes. In particular, LEDAkem hinges
on a family of QC-LDPC codes, C(n, k) with n = pn0, k = p(n0 − 1), having a (small) basic
block length n0, and a single p × p redundancy block (i.e., r = n − k = pr0 = p, r0 = 1) in
each codeword, where p is an odd prime integer [1, 2].

• The public code is neither coincident with nor equivalent to the private code.

• Suitably designed iterative non-bounded-distance decoding algorithms are used.

The motivation of using QC-LDPC codes as private codes is in the fact that these codes are known
to achieve important reductions in the public key size when used in this context [1, 27]. However,
when LDPC codes are used as private codes, the public code cannot be either coincident with or
equivalent to the private code. Otherwise, an attacker could search for low weight codewords in
the dual of the public code and find a sparse parity-check matrix of the private code which allows
efficient decoding.

For this reason, following [1], LEDAkem uses a transformation matrix Q that hides the sparse
parity-check matrix H of the private code into a denser parity-check matrix L = HQ of the public
code. This also affects the error vector that must be corrected during decryption, which is obtained
from the error vector used during encryption through multiplication by Q. However, efficient

Page 13

LEDAkem

iterative decoding algorithms are proposed that exploit the knowledge of Q to achieve very good
performance in terms of speed and DFR.

In fact, a well-known feature of LDPC coding is that the decoding radius of iterative decoders cannot
be estimated in a deterministic way, therefore some residual DFR must be tolerated, and it must be
estimated heuristically through Montecarlo simulations. This is done for all the proposed instances
of LEDAkem in order to guarantee that they achieve a sufficiently low DFR. Despite the presence
of decryption failures, our scheme exhibits the indistinguishability under chosen ciphertext attack
(IND-CCA) property, in the sense claimed in [30]. Indeed, the IND-CCA conversion described in
[30] works only if there are no decryption failures or the attacker cannot derive from them any
information. This is exactly what happens in our scheme, where we avoid that a reaction attack,
based on decryption failures, is successful by using ephemeral keys or changing them before the
attack can be applied.

1.3.1 Description of the Primitives

The main functions of LEDAkem are described next.

Key generation. Both private and public keys are formed by binary matrices. These matrices,
in their turn, are formed by p× p circulant blocks.

Secret key. The key generation input is formed by:

• The circulant block size p (usually in the order of some thousands bits).

• The integer n0 (usually between 2 and 4), representing the number of circulant blocks forming
the matrix H.

• The integer dv, representing the row/column weight (usually between 15 and 25) of the
circulant blocks forming the matrix H.

• The vector of integers m̄ = [m0,m1, . . . ,mn0−1], representing the row/column weights (each
entry usually smaller than 10) of the circulant blocks forming the matrix Q.

Given these inputs, the secret key is obtained as follows.

First, n0 sparse circulant matrices with size p are generated at random. Each of them has
row/column weight dv. We denote such matrices as H0, H1, . . . ,Hn0−1. The secret low-density
parity-check matrix H is then obtained as

H = [H0|H1|H2| . . . |Hn0−1] . (1.8)

The size of H is p × n0p. Other n2
0 sparse circulant blocks Qi,j are then randomly generated to

form the secret sparse matrix

Q =

Q0,0 Q0,1 . . . Q0,n0−1

Q1,0 Q1,1 . . . Q1,n0−1
...

...
. . .

...
Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 . (1.9)

Page 14

LEDAkem

The row/column weight of each block Qi,j is fixed according to the following matrix:

w(Q) =

m0 m1 . . . mn0−1

mn0−1 m0 . . . mn0−2
...

...
. . .

...
m1 mn0−1 . . . m0

 , (1.10)

such that each row and each column of Q has weight m =
∑n0−1

i=0 mi.

The choice of the weights m̄ = [m0,m1, · · · ,mn0−1] is very important since, as we will prove in the
following theorem, it decides whether Q is singular or not. In the following, we denote by Π {·} the
permanent of a matrix, and with w (·) the weight of a polynomial, i.e., the number of its coefficients
that are nonzero.

Theorem 1.3.1 Let p > 2 be a prime such that ordp(2) = p − 1 and Q is an n0 × n0 matrix of
elements of F2[x]/〈xp + 1〉; if Π {w(Q)} is odd and Π {w(Q)} < p, then Q is non singular.

Proof. Since each block Qij is isomorphic to a polynomial qij(x) ∈ F2[x]/〈xp+1〉, the determinant
of the matrix Q is represented as an element of F2[x]/〈xp + 1〉, too. Let us denote by d(x) the
polynomial associated to the determinant. If the inverse of d(x) exists, then Q is non singular.
According to Section 1.1.3, showing that d(x) has odd weight and d(x) 6= Φ(x) = xp−1+xp−2+· · ·+1
is enough to guarantee that it is invertible. In general, when we are considering two polynomials
a(x) and b(x), with w (a(x)) = wa and w (b(x)) = wb, the following statements hold:

i. w (a(x)b(x)) = wawb − 2c1, where c1 is the number of cancellations of pairs of monomials
with the same exponent resulting from multiplication;

ii. w (a(x) + b(x)) = wa + wb − 2c2, where c2 is the number of cancellations due to monomials
with the same exponent appearing in both polynomials.

The determinant d(x) is obtained through multiplications and sums of the elements qij(x) and, in
case of no cancellations, has weight equal to Π {w(Q)}. If some cancellations occur, considering
statements i) and ii) above, we have that w (d(x)) = Π {w(Q)}− 2c, where c is the overall number
of cancellations. So, even when cancellations occur, d(x) has odd weight only if Π {w(Q)} is odd.
In addition, the condition Π {w(Q)} < p guarantees that d(x) 6= Φ(x), since w (Φ(x)) = p.

With this result, we can guarantee that, when the sequence m̄ is properly chosen, the matrix Q is
always non singular. As we will discuss in the following, a non-singular matrix Q is necessary for
key generation to be successful.

Definition 1.3.1 The Secret Key (SK) of LEDAkem is formed by {H,Q}.

Since both H and Q are formed by sparse circulant blocks, it is convenient to represent each of
these blocks through the indexes of the symbols 1 in their first row. Each index of this type requires
dlog2(p)e bits to be stored. If we consider that the circulant blocks in any block row of Q have
overall weight m =

∑n0−1
i=0 mi, the size of SK in bits is

SSK = n0 (dv +m) dlog2(p)e (1.11)

In practice, the secret matrices are generated through a Deterministic Random Bit Generator
(DRBG), seeded with a bit string extracted from a True Random Number Generator (TRNG).

Page 15

LEDAkem

In this case, to obtain H and Q it is sufficient to know the TRNG extracted seed of the DRBG
that has been used to generate the positions of their non-null coefficients. This approach allows
reducing the size of the secret key to the minimum required, as it is assumed that the TRNG output
cannot be further compressed. The entity of the reduction depends on the values of the parameters
involved in eq. (1.11).

Public key Starting from H and Q, the following binary matrices are computed. First of all,
the matrix L is obtained as

L = HQ = [L0|L1|L2| . . . |Ln0−1] . (1.12)

If both dv and m are odd, then Ln0−1 has full-rank. In fact, Ln0−1 =
∑n0−1

i=0 HiQi,n0−1 and has
weight equal to mdv − 2c (where c is the number of cancellations occurred in the product). If mdv
is odd and mdv < p, Ln0−1 is non-singular according to Section 1.1.3.

After inverting Ln0 , the following matrix is computed:

M = L−1
n0−1L = [M0|M1|M2| . . . |Mn0−2|I] = [Ml|I] . (1.13)

Definition 1.3.2 The Public Key (PK) of LEDAkem is formed by Ml = [M0|M1 |M2| . . . |Mn0−2].

Since the circulant blocks forming Ml are dense, it is convenient to store them through the binary
representation of their first row (the other rows are then obtained as cyclic shifts of the first row).
The bit-size of the PK hence is

SPK = (n0 − 1) p. (1.14)

Encryption The plaintext is intended to be a secret value, ks, randomly generated by Bob, to
be shared with Alice. The encryption inputs are:

• The values of n0 and p, from which n = n0p is computed.

• The number of intentional errors t� n.

Bob generates, privately, a random binary vector e, with length of n = n0p bits and Hamming
weight t. Given a Key Derivation Function (KDF), the shared secret key ks is generated from e as
ks = KDF(e).

Definition 1.3.3 In order to share the secret e, Bob fetches Alice’s PK Ml and computes

s = [Ml|I] eT (1.15)

where T denotes transposition. The p× 1 syndrome vector s is then sent to Alice.

Decryption In order to perform decryption, Alice must recover e from s. The latter can be
written as

s = MeT = L−1
n0−1Le

T = L−1
n0−1HQe

T . (1.16)

The first decryption step for Alice is computing

s′ = Ln0−1s = HQeT . (1.17)

Page 16

LEDAkem

For this purpose, Alice needs to know Ln0−1 that, according to eq. (1.12), is the last circulant block
of the matrix HQ. Hence, it can be easily computed from the SK. If we define the expanded error
vector as

e′ = eQT , (1.18)

we have
s′ = He′T . (1.19)

Hence, QC-LDPC decoding through H can be exploited for recovering e′ from s′. QC-LDPC
decoders are not bounded distance decoders, and some DFR must be tolerated. However, the
system parameters can be chosen such that the DFR is acceptably small. For this purpose, the
average decoding radius of the private code must be sufficiently larger than the Hamming weight
of e′, which is approximately equal to mt (due to the sparsity of Q and e). Then, multiplication

by
(
QT
)−1

would be needed to obtain e from e′, that is,

e = e′
(
QT
)−1

. (1.20)

However, by exploiting the efficient decoding algorithms described in Section 1.3.2, this last step

can be avoided, which also allows for avoiding to store or compute
(
QT
)−1

as part of the secret
key. In fact, the decoding algorithm described in Section 1.3.2 allows recovering e directly from
eq. (1.17), by performing decoding of s′ through H and taking into account the effect of Q. Then,
the secret key is recovered as ks = KDF(e).

In case a decoding error occurs, the decryption procedure derives the shared secret as KDF(s), as
described in [30]. In this case, Bob will become aware of the decoding failure upon reception of the
first message sent by Alice encrypted with the incorrectly derived shared secret.

1.3.2 An efficient decoding algorithm for LEDAkem

While it is possible to perform decoding of the expanded error vector e′ employing a classic BF
decoder such as the one described in Algorithm 1.1.1, such a choice would not exploit to the utmost
the correction power of the QC-LDPC code at hand. Indeed, the error bits in e′ are not uniformly
distributed; instead their positions depend on the positions of the ones in QT , which are known to
the decoder.

Starting from classical BF, we have developed an improved decoder that is specifically designed for
LEDAkem, which takes into account the fact that the positions of the ones in the expanded error
vector e′ are influenced by the value of QT , as e′ is equivalent to a random error vector e with
weight t multiplied by QT . Since this improved decoder takes into account such a multiplication
by the transpose of matrix Q to estimate with greater efficiency the locations of the bits to flip, we
denote it as Q-decoder.

The inputs of the Q-decoder are the syndrome s′ according to eq. (1.17) and the matrices H and
Q according to eq. (1.8) and eq. (1.9), respectively. The output of the decoder is a 1 × n vector
ê or a decoding failure, where ê represents the decoder estimate of the error vector e appearing
in eq. (1.17). The decoding procedure goes through a maximum of lmax iterations, each iteration
is fed with s(l−1) and ê(l−1), and outputs s(l) and ê(l). The initialization is performed by setting
s(0) = s′T and ê(0) = 0n, where 0n is the length-n vector with all-zero entries. The l-th iteration of
the Q-decoder performs the following operations:

Page 17

LEDAkem

i. Compute Σ(l) = [σ
(l)
1 , σ

(l)
2 , · · · , σ(l)

n] = s(l−1)H (this multiplication is performed lifting all the
elements of both s(l−1) and H in the integer domain Z, hence Σ(l) is a vector of integers
having entries between 0 and dv).

ii. Compute R(l) = [ρ
(l)
1 , ρ

(l)
2 , · · · , ρ(l)

n] = Σ(l)Q (this multiplication is performed in Z as well).

iii. Define b(l) = maxj=1,2,··· ,n

{
ρ

(l)
j

}
and =(l) =

{
v ∈ [1, n]| ρ(l)

v = b(l)
}

.

iv. Update ê(l−1) as

ê(l) = ê(l−1) +
∑

v∈=(l) qv,

where qv is the v-th row of QT .

v. Update the syndrome as

s(l) = s+ ê(l)HT .

vi. If the weight of s(l) is zero then stop decoding and return ê(l).

vii. If l+ 1 ≤ lmax then increment l and go back to step i), otherwise stop decoding and return a
decoding failure.

As in the classical BF decoder, the first step of this algorithm computes the vector Σ(l). Each
entry of this vector counts the number of unsatisfied parity-check equations corresponding to that
bit position, and takes values in [0; dv]. This evaluates the likelihood that the entry of e′ at the
same position is one. Differently from classical BF, in step ii) the correlation R(l) between these
likelihoods and the rows of QT is computed. In fact, the expanded error vector e′ = eQT can be
written as the sum of the rows of QT indexed by the support of e, that is

e′ =
∑

j∈Ψ{e}

qj (1.21)

where Ψ {e} denotes the support of e.

Since both Q and e are sparse (that is, m, t � n), cancellations between ones are very unlikely.
When the correlation between Σ(l) and a generic row qv of QT is computed, two cases may occur:

• If v /∈ Ψ {e}, then it is very likely that qv has a very small number of common ones with all
the rows of QT forming e′, hence the correlation is small.

• If v ∈ Ψ {e}, then qv is one of the rows of QT forming e′, hence the correlation is large.

The main difference with classical BF is that, while in the latter all error positions are considered
as independent, the Q-decoder exploits the correlation among expanded errors which is present in
LEDAkem, due to the effect of QT . This allows to achieve important reductions in the number of
decoding iterations. As a further advantage, this decoder allows recovering e, besides e′, without
the need of computing and storing the inverse of matrix QT .

Page 18

LEDAkem

1.3.3 Choice of the Q-decoder decision thresholds

One important aspect affecting performance of Q-decoders is the choice of the threshold values
against which the correlation is compared at each iteration. As described in Section 1.3.2, a natural
choice is to set the threshold used at the l-th iteration equal to the element with maximum value of
the correlation R(l). This strategy ensures that only those few bits that have maximum likelihood of
being affected by errors are flipped during each iteration, thus achieving the lowest DFR. However,
it has some drawbacks in terms of complexity, since the computation of the maximum correlation
must be performed at each iteration.

Therefore, we consider a different strategy, which allows computing the threshold values on the
basis of the syndrome weight at each iteration. According to this approach, during an iteration it
is sufficient to compute the syndrome weight and read the corresponding threshold value from a
look-up table. This strategy still allows to achieve a sufficiently low DFR, but within a significantly
smaller number of decoding iterations.

Let us consider the l-th iteration of the Q-decoder, and denote by tl the weight of the error vector
e(l) and with t′l the weight of the corresponding expanded error vector e′(l) = e(l)QT . Let us
introduce the following probabilities [5]

pci(t
′
l) =

min[n0dv−1,t′l]∑
j = 0, j odd

(
n0dv−1

j

)(
n−n0dv
t′l−j

)(
n−1
t′l

) (1.22)

pic(t
′
l) =

min[n0dv−1,t′l−1]∑
j = 0, j even

(
n0dv−1

j

)(
n−n0dv
t′l−j−1

)(
n−1
t′l−1

) (1.23)

where:

• pci(t
′
l) is the probability that a codeword bit is error-free and a parity-check equation evaluates

it wrongly;

• pic(t
′
l) is the probability that a codeword bit is in error and a parity-check equation evaluates

it correctly.

In both cases, the syndrome bit is equal to 1.

The probability that each syndrome bit is equal to 1 can be therefore computed as pic(t
′
l) + pci(t

′
l),

so the average syndrome weight at iteration l can be computed as

w(l)
s = E

[
wt
{
s(l)
}]

=
[
pic(t

′
l) + pci(t

′
l)
]
p (1.24)

where wt {·} denotes the Hamming weight. Since both the parity-check matrix and the error vector

are sparse, the probability of wt
{
s(l)
}

being significantly different from w
(l)
s is negligible.

So, eq. (1.24) allows predicting the average syndrome weight starting from t′l. In order to predict how
t′l varies during iterations, let us consider the i-th codeword bit and the corresponding correlation

value ρ
(l)
i at iteration l. The probability that such a codeword bit is affected by an error can be

Page 19

LEDAkem

written as

P
{
ei = 1|ρ(l)

i

}
=
P
{
ei = 1, ρ

(l)
i

}
P
{
ρ

(l)
i

} =

=
P
{
ei = 1, ρ

(l)
i

}
P
{
ei = 1, ρ

(l)
i

}
+ P

{
ei = 0, ρ

(l)
i

} =

=

1 +
P
{
ei = 0, ρ

(l)
i

}
P
{
ei = 1, ρ

(l)
i

}
−1

(1.25)

where ei is the i-th bit of the error vector used during encryption. After some calculations, we
obtain

P
{
ei = 1|ρ(l)

i

}
=

1

1 + n−tl
tl

(
pci(tl)
pic(tl)

)ρ(l)i
(

1−pci(tl)
1−pic(tl)

)mdv−ρ(l)i

(1.26)

where pci(tl) and pic(tl) are given in eq. (1.22) and eq. (1.23), respectively, with tl as argument
instead of t′l.

Adding the i-th row of QT to the expanded error vector e′ is the same as flipping the i-th bit of
the error vector e. Hence, we can focus on e and on how its weight tl changes during decoding
iterations. The values of tl can be estimated as t′l/m, due to the sparsity, while those of t′l can be
estimated according to (1.24).

The decision to flip the i-th codeword bit is taken when the following condition is fulfilled

P
{
ei = 1|ρ(l)

i

}
> (1 + ∆)P

{
ei = 0|ρ(l)

i

}
(1.27)

where ∆ ≥ 0 represents a margin that must be chosen taking into account the DFR and complexity:
increasing ∆ decreases the DFR but increases the number of decoding iterations. So, a trade-off
value of ∆ can be found that allows achieving a low DFR while avoiding unnecessary large numbers
of iterations.

Since P
{
ei = 0|ρ(l)

i

}
= 1− P

{
ei = 1|ρ(l)

i

}
, eq. (1.27) can be rewritten as

P
{
ei = 1|ρ(l)

i

}
>

1 + ∆

2 + ∆
. (1.28)

P
{
ei = 1|ρ(l)

i

}
is an increasing function of ρ

(l)
i , hence the minimum value of ρ

(l)
i such that eq. (1.28)

is satisfied can be computed as

b(l) = min

{
ρ

(l)
i ∈ [0;mdv], s.t. P

{
ei = 1|ρ(l)

i

}
>

1 + ∆

2 + ∆

}
(1.29)

and used as the decision threshold at iteration l.

Based on the above considerations, the procedure to compute the decision threshold value per each
iteration as a function of the syndrome weight can be summarized as follows:

Page 20

LEDAkem

i. The syndrome weights corresponding to t′l = 0,m, 2m, · · · ,mt (which are all the possible
values of t′l neglecting cancellations) are computed according to eq. (1.24). These values are
denoted as {ws(0), ws(m), · · · , ws(mt)}.

ii. At iteration l, given the syndrome weight w̄s
(l), the integer j ∈ [0, t] such that ws(jm) is as

close as possible to w̄s
(l) is computed.

iii. Consider tl = j and compute b(l) according to eq. (1.29) and eq. (1.26). The value of b(l), so
obtained, is used as the decoding threshold for iteration l.

The above procedure can be implemented efficiently by populating a look-up table with the pairs
{wj , bj}, sequentially ordered. During an iteration, it is enough to compute w̄s

(l), search the biggest
wj in the look-up table such that wj < w̄s

(l) and set b(l) = bj .

We have observed that, moving from the bigger values of wj to the smaller ones, the threshold
values computed this way firstly exhibit a decreasing trend, then start to increase. According to
numerical simulations, neglecting the final increase is beneficial from the performance standpoint.
Therefore, in the look-up table we replace the threshold values after the minimum with a constant
value equal to the minimum itself.

Page 21

Chapter 2

Security Analysis

2.1 Hardness of the underlying problem

The set of computational decision problems for which an efficient solution algorithm can be devised
for a non-deterministic Turing Machine (TM) represents a fruitful computational class from which
primitives for asymmetric cryptosystems have been designed. Such a computational class, known
as the NP (Nondeterministic Polynomial) class, is characterized by problems for which it is efficient
(i.e., there is a polynomial-time algorithm) to verify the correctness of a solution on a deterministic
TM, while finding a solution to the problem does not have in general an efficient algorithm on a
deterministic machine, hence the computational asymmetry required to build a cryptosystem.

When considering a quantum TM, i.e., the abstract computational model for a quantum computer,
the class of problems which can be solved in polynomial time, with the quantum TM providing
the correct answer with probability > 2

3 , is known as the Bounded-error Quantum Polynomial time
class, BQP [9]. In 1997 Peter Shor proved that the integer factoring problem, which has its decisional
version in NP, is effectively in BQP [36], in turn demonstrating that a widely adopted cryptographic
trapdoor function can be broken in polynomial time by a quantum computer. Consequentially, to
devise a proper post-quantum asymmetric primitive it is crucial to choose a computational problem
which resides outside BQP as its underlying foundation. While there is no current formal proof,
a sub-class of NP, the NP-complete problem class, is widely believed to contain computational
problems not belonging to BQP, thus allowing only a polynomial speedup in their solution with a
quantum TM.

LEDAkem is constructed starting from the computational problem of performing the decoding of a
syndrome, i.e., deriving the corresponding error vector with a bounded weight for a general linear
code, which was shown to be NP-complete in [7]. Indeed, in [7] the authors show that there is
no exponentially faster way to compute the error vector of a general linear code than through
enumerating and testing all the possible ones, unless P=NP. While the public matrix Ml of the
LEDAkem cryptosystem has quasi-cyclic structure, we note that no algorithms currently exist
exploiting this regularity to gain an exponential advantage in decoding the corresponding code.

With this statement standing, the security analysis of LEDAkem examines and quantifies the effec-
tiveness of the best known attacks detailing the efficiency of algorithms running on both classical
and quantum computers providing non-exponential speedups over an enumerative search for the
correct error vector. We remark that currently no algorithm running on either a classical TM or

22

LEDAkem

a quantum TM provides an exponential speedup in solving the computational problem underlying
LEDAkem compared to an exhaustive search approach.

2.2 Analysis of the algorithm with respect to known attacks

Reaction Attacks. One of the most effective attacks against the QC-LDPC code-based cryp-
tosystems already established in the literature [4, 5], from which LEDAkem is derived, are the
so-called reaction attacks proposed in [14]. Reaction attacks exploit the correlation between the
DFR of a given code associated to a keypair and the structure of the secret key. To this end, reac-
tion attacks need to estimate the DFR on a set of properly crafted erroneous codewords. LEDAkem
prevents reaction attacks altogether using ephemeral keys, since an attacker may only obtain the
result of a single decode action with a given keypair. We note that, given the low DFR of the
code instances which are proposed for LEDAkem even the occasional reuse of a key will not allow
reaction attacks to threaten the system.

Squaring Attacks. Another potential attack to systems based on QC-LDPC codes is the one
presented in [35]. This attack uses a so-called squaring technique to find a a low-weight error vector
and thus low-weight codewords more efficiently than with a general Information Set Decoding (ISD)
algorithm. This attack, however, is applicable if and only if the size of the circulant blocks p is
even. In LEDAkem p is chosen as a prime both as a conservative choice against cryptanalysis
exploiting factorization of p, and gaining in terms of efficiency due to the invertibility test reported
in Theorem 1.3.1.

Decoding Attacks (DA) and Key Recovery Attacks (KRA). Concerning attacks which
aim at solving efficiently the decoding of a message exploiting the public code representation,
a prime position is occupied by the ISD approach. The ISD approach attempts at performing
the decoding of a general linear code (polynomially) more efficiently than an exhaustive search
approach, and was pioneered by Prange in [32]. Subsequent improvements of Prange’s algorithm
were presented by Lee-Brickell [21], Leon [22] and Stern [37] improving, although polynomially on
Prange’s original algorithm. Among these variants, the most noteworthy one is the one by Stern [37]
which is currently the one best exploiting the speedups provided by quantum computers according
to [12]. In particular, a significant portion of Stern’s algorithm can be solved employing Grover’s
algorithm [17] to cut down the running time to the square root of the one needed for a computation
on a classical platform. By contrast,when considering efficient execution on classical computers
the most efficient ISD turns out to be the Becker-Joux-May-Meurer (BJMM) algorithm proposed
in [6] which is part of a family of recent results [8, 25,28,31]. As a consequence, the security levels
against attackers performing a Decoding Attack (DA) with classical computers have been estimated
by considering the work factor of the BJMM algorithm, while the security levels against quantum
computer-equipped attackers were computed taking into account Stern’s algorithm.

A different approach at attacking the system is the one of efficiently finding low-weight codewords
in the dual of the public code of the cryptosystem. It is possible to show that the low weight
codeword finding problem is equivalent to the general linear code decoding problem, thus allowing
ISD to be retrofit to this task too. In the case of LEDAkem we note that the matrix L = HQ,
which is generally sparse, is a valid parity-check matrix for the public code. Since the rows of L are
sparse codewords of the code generated by M (that is, the dual code of the public code), and have

Page 23

LEDAkem

weight in the order of n0dvm, an attacker may search for them in the dual of the public code. An
opponent may thus exploit an efficient algorithm for the search of low-weight codewords in linear
block codes, thus performing a Key Recovery Attack (KRA) on L, row by row. Then, because of
the sparsity of L, the opponent may succeed in separating H from Q and recovering the secret key.
Alternatively, the attacker may just attempt to perform the decoding action employing the entire
L, which has low weight, as a parity-check matrix.

We defend LEDAkem from both DAs and KRAs employing parameters which prevent the low-
weight codeword finding from succeeding given a computational power bounded by the desired
security level. To this end, we take into account the fact that the nature of the QC codes employed
in LEDAkem provides a speedup by a factor

√
p with respect to the running time of the ISD

algorithm employed to perform a general linear code decoding [34]. Instead, when the ISD algorithm
is employed with the purpose of retrieving low-weight codewords in L the speedup factor provided
by the QC structure of L is p with respect to its application to a general code. Both these speedup
factors are taken into account in our estimates of the security level for a given parameter set.

Quantum Stern’s algorithm. Considering the fact that Stern’s algorithm [37] is the one best
suited for quantum computer execution, and will thus be employed to determine the parameters
of LEDAkem, we briefly resume the results in [12], describing how the application of Grover’s
algorithm to ISD can be taken into account when computing the complexity of KRAs and DAs.

ISD is an algorithm A(C(n, k), w) taking as input a code C(n, k) with length n, dimension k, and
tries to find a codeword of weight w or, equivalently, an error vector with weight w given the code
and the corresponding syndrome.

In LEDAkem, employing ISD to perform a general decoding will have it acting on an n0p bits long
code, with dimension (n0−1)p, trying to correct t errors, while employing it to perform low-weight
codeword finding is equivalent to running it on a code n0p bits long, with dimension p, trying to
correct n0dvm errors.

The basic structure of each ISD algorithm is essentially the same, and is based on the identification
of an information set, that is, a set of k linearly independent columns of the generator matrix of
the code. Recovering the entries of the error vector affecting this set is enough to reconstruct the
whole error vector. The algorithm must be run iteratively, and each iteration has a probability
of success pA. Thus, the expected number of iterations that makes the attack successful is 1

pA
.

The probability pA is obtained as the product of pinv and pe, where pinv is the probability that
an iteration of ISD has selected a set of k linearly independent vectors, while pe is the probability
that the error vector entries affecting the selected set can be recovered. It can be proven that pinv
converges to pinv ≈ 0.29 as the size of the binary matrix being inverted increases, while for pe we
have

pe =

(
w

2m

)(
n−w
k−2m

)(
2m
m

)(
n−k−w+2m

l

)
4m
(
n
k

)(
n−k
l

)
according to [37], where l and m are parameters which influence the complexity of the algorithm
and must be optimized to minimize the value of pe.

Taking into account the speedup following from the application of Grover’s algorithm to Stern’s

algorithm, it follows that the algorithm is successful after performing only π
4

√
1
pA

= π
4

√
1

pinvpe

iterations on average, instead of 1
pinvpe

. Let us define:

Page 24

LEDAkem

• cdec as the cost in qubit operations of decoding the input qubits to the inputs of the clas-
sical algorithm which must be performed whenever an iteration completed on the quantum
computer;

• cit as the number of bit operations needed to perform an iteration of the classical Stern’s
algorithm;

• cinv as the cost of inverting the matrix obtained with the k columns selected during the
iteration; in fact, because a quantum implementation of Stern’s algorithm must be performed
entirely with revertible operations, skipping an iteration is not possible, even if the selected
k-columns do not correspond to an information set (i.e., they are not linearly independent).

By taking the conservative assumption that a qubit operation has the same cost of a bit operation, it
is possible to express the amount of operations required to execute Stern’s algorithm on a quantum
computer as

π

4

√
1

pinvpe
(cdec + cinv + cit) (2.1)

Estimating the actual value of cdec can be very hard, since it depends on the size of the input
given to A. For example, some input parameters can be fixed (in this case, the number of bits
needed to represent the input given to A decreases) but, at the same time, the value of pe might
get lower (since, in this case, we might not consider an optimal input choice). While estimates for
cdec have put it in the 230 range [12], we conservatively consider cdec = 0. Finally, to compute the
two remaining computational costs, we refer to the following expressions from [37]:

cit = 2lm

(
k/2

m

)
+ 2m(n− k)

(
k/2

m

)2

2−l (2.2)

cinv =
1

2
(n− k)3 + k(n− k)2 (2.3)

BJMM algorithm complexity. As already mentioned, when only classical computers are avail-
able, the most efficient ISD algorithm turns out to be the BJMM algorithm proposed in [6]. A
precise estimation of the work factor of this algorithm in the finite-length regime can be found
in [19], and it has been used to compute the work factor of attacks based on ISD against the
proposed instances of LEDAkem, when performed with classical computers. While the complete
expression of the computational complexity of the BJMM algorithm is rather complex, we point out
that a simple expression providing an approximate but fairly intuitive expression for it is reported
in [11]: 2cw, where c = log2

1
1− k

n

.

2.3 System parameters for the required security categories

Nine sets of parameters for LEDAkem are proposed, clustered into in three classes corresponding
to different security guarantees. Each one of the three instances in each class correspond to a
different value of n0 (2, 3, 4), yielding a different balance between performance and public key size.
The parameters of the nine instances of LEDAkem are reported in Table 2.1 for the NIST required
security categories 1, 3 and 5, respectively. We assume that the security requirements of category

Page 25

LEDAkem

2 can be fulfilled employing category 3 parameters, and the security requirements for category 4
are fulfilled by category 5 parameters. In the table, the superscript (pq) denotes that the attack
work factor has been computed taking into account quantum speedups due to Grover’s algorithm,
while the superscript (cl) denotes that only classical computers have been considered in evaluating
the attack work factor.

For each security category and considered value of n0, we computed the minimum values of dv mdv
and t which ensure the desired the security level against KRAs and DAs, respectively. Then we
selected a value for the circulant block size p as a prime with ord2(p) = p − 1 to provide efficient
invertibility tests for circulant blocks. We have checked whether tm errors can be corrected by the
private code through Q-decoding maintaining a sufficiently low DFR via Montecarlo simulations.
In particular, we targeted 10−8 as an acceptable DFR. Otherwise, we have increased the value of
p and repeated the procedure.

In order to obtain a preliminary estimate of the value of p to speed up the design procedure, we
exploited the BF asymptotic thresholds supplied in [5]. These thresholds allow, given the code size
n, dimension k and density dv, to compute an estimate of the biggest weight of an error vector
which can be corrected by the code, using a classical BF decoder.

This approach can be used also for predicting the correcting capability of LEDAkem: indeed, we
have observed that, in the waterfall region of the Q-decoder, the DFR of the system, when weight-t
error vectors are used, can be approximated by the one of a BF-decoder, taking as input a parity
check matrix in the same form as eq. (1.8) and having circulant blocks with weight equal to mdv.
Thus, the BF threshold can be used to predict the correcting capability of a LEDAkem instance:
if the theoretical threshold is below the value of t, then a bigger value of p must be chosen. We
want to stress that the described DFR estimation procedure is only approximated, and Montecarlo
simulations must be performed in order to evaluate the actual DFR of the system.

In order to make a conservative design choices for the parameters, we have considered some margin
in the complexity estimates of the attacks, such that the actual security level for these instances is
larger than the target one. This also accounts for possible (though rare) cancellations occurring in
L when computed as the product of H and Q, which may yield a row weight slightly smaller than
mdvn0, influencing the resistance to KRAs. The values of dv have been chosen greater than 15 in
order to avoid codes having small minimum distances.

To ensure that both H and Q have maximum rank, we chose dv odd and [m0,m1, · · · ,mn0−1] have
been chosen such that the value of Π {w(Q)} is odd and smaller than p, allowing theorem 1.3.1
to hold. Indeed since, L = HQ is a valid parity-check matrix for the public code, a singular Q,
may result in the rank of L being lower than p, leading to a code with a co-dimension lower than
p. When multiple choices of m and dv were possible to achieve the same security level, we have
selected those with the lowest values of the product mdv, as this is known to enhance the error
correcting capability of the private code.

The system parameters design procedure can thus be summarized as follows:

i. pick a desired security level SL expressed as the log2 of the number of operations to be
performed and a number of circulant blocks n0;

ii. consider the computational effort of performing a decoding via ISD and compute the minimum
number of errors t̂, in order to ensure that DAs take more than 2SL operations;

iii. consider the computational effort of performing a KRA via ISD and compute the minimum

Page 26

LEDAkem

Table 2.1: Parameters for LEDAkem and estimated computational efforts to break a given instance
as a function of the security category and number of circulant blocks n0

Category n0 p dv [m0, · · · ,mn0−1] t SL
(pq)
DA SL

(pq)
KRA SL

(cl)
DA SL

(cl)
KRA DFR

1

2 27, 779 17 [4, 3] 224 135.43 134.84 217.45 223.66 ≈8.3·10−9

3 18, 701 19 [3, 2, 2] 141 135.63 133.06 216.42 219.84 . 10−9

4 17, 027 21 [4, 1, 1, 1] 112 136.11 139.29 216.86 230.61 . 10−9

2–3

2 57, 557 17 [6, 5] 349 200.47 204.84 341.52 358.16 . 10−8

3 41, 507 19 [3, 4, 4] 220 200.44 200.95 341.61 351.57 . 10−8

4 35, 027 17 [4, 3, 3, 3] 175 200.41 201.40 343.36 351.96 . 10−8

4–5

2 99, 053 19 [7, 6] 474 265.38 267.00 467.24 478.67 . 10−8

3 72, 019 19 [7, 4, 4] 301 265.70 270.18 471.67 484.48 . 10−8

4 60, 509 23 [4, 3, 3, 3] 239 265.48 268.03 473.38 480.73 . 10−8

value of mdv, in order to ensure that KRAs take more than 2SL operations; denote this value
as d̂′v;

iv. compute an initial value of p such that ordp(2) = p−1 and that the resulting code is expected
to be correcting at least t errors via Q-decoder according to asymptotic estimates;

v. choose dv as an odd number and a set of integers [m0,m1, · · · ,mn0−1] such that Π {w(Q)} is
odd and smaller than p and mdv ≥ d̂′v. If more than a solution is possible pick the one with
mdv closest to d̂′v;

vi. simulate the DFR of the code; if it is not sufficiently low, restart from (iv) and choose a larger
value of p.

In the steps (ii) and (iii) a temporary value of p is used to compute the work factor of the attacks,
which however do not exhibit a significant dependence on p (and so, on n). Nevertheless, at the
end of the design process, it is necessary to verify that the final value of p actually yields a work
factor of both DAs and KRAs above the target security level.

Table 2.1 reports the values of the parameters derived with the aforementioned procedure for the
nine instances of LEDAkem. The DFR were estimated through Montecarlo simulations: for all
the parameter sets belonging to categories 3 and 5 we computed 108 decoding actions without
encountering a single decoding error. For the parameter set corresponding to category 1, with
n0 = 2 circulant blocks we obtained an estimate of the DFR of ≈ 8.3 · 10−9, having encountered 20
decoding errors over 2.394 · 109 decoding actions. For the parameters corresponding to category 1
and n0 ∈ {3, 4} we encountered no decoding errors during the computation of 109 decoding actions.

2.4 Properties of the cryptosystem

From the standpoint of formal security guarantees, LEDAkem enjoys the property that its ci-
phertext is indistinguishable from a random string under a chosen plaintext attack model, i.e.,
LEDAkem provides a KEM with Indistinguishability under Chosen Plaintext Attack (IND-CPA),
under the random oracle model, with a polynomially computationally bound adversary. Indeed,
assuming that the KDF employed to derive the shared secret from the encrypted error vector can be
modeled as a random oracle, the attacker, supplied with a ciphertext and an alleged shared secret

Page 27

LEDAkem

value, is not able to understand whether or not the ciphertext is actually derived from the alleged
shared secret or not unless he is able to perform a further call to an encryption oracle. Furthermore,
we note that the LEDAkem primitive is amenable to be employed to build an Indistinguishability
under Chosen Ciphertext Attack (IND-CCA) KEM+DEM scheme, as described in [30].

Furthermore, we note that LEDAkem prevents the trivial ciphertexts malleability due to the lin-
earity property of error correcting codes. Indeed, despite an attacker may be able to alter the
ciphertext so that it decrypts to a valid error vector e, the shared secret is derived via a hash based
KDF, which prevents him from choosing the actual value of the shared secret, as it would imply
that the attacker is able, given an output of the KDF, to provide a valid pre-image for it.

Given the running times of the key generation algorithm, LEDAkem can be employed to provide
Perfect Forward Secrecy (PFS) as described in [20]. Indeed, since LEDAkem is proposed as an
ephemeral-key KEM, it is sufficient to erase the keypairs as soon as the session key has been
established, and to erase the session key at the end of the communication to achieve PFS.

While LEDAkem does not provide authentication features per se, it is possible to exploit general
constructions such as the one proposed in [15] to turn an IND-CCA KEM into an Authenticated
Key Exchange (AKE).

Finally, in case the goodness of the sender TRNG is questionable, the LEDAkem protocol can be
repeated in both directions to exchange two partial secret keys, ks1 and ks2 , each one generated by
an endpoint. Then, the session key is obtained as KDF(ks1 | ks2), thus compensating for possible
TRNG shortcomings of one of the involved parties.

Risks in case of keypair reuse

While LEDAkem uses ephemeral keys that are meant for single use, it is possible that implemen-
tation accidents lead to a reuse of the same keypair more than once. The main threat in case of
keypair reuse is the reaction attack described in [14]: the attack relies on the correlation exist-
ing between the structure of the parity matrix of QC-LDPC code and its DFR which raises the
DFR above the average whenever the error pattern matches the structure of the parity matrix in
a significant amount. However, for the attack to succeed, the attacker needs to reliably estimate
the decoding failure rate for a large set of carefully crafted or selected error vectors, and this can
be done only after a minimum (and large) number of decoding errors is observed. Considering
that, in order to wait for a single decoding error, the attacker must wait (on average) for DFR−1

cyphertexts, occasional keypair reuses do not represent a problem, given that the DFR of the codes
in the proposed instances of LEDAkem are in the 10−8 to 10−9 range. This in turn allows a very
graceful degradation in case of an accidental keypair reuse.

Resistance to multi-key attacks

No multi-key attacks have been reported against these systems and, more in general, against
McEliece/Niederreiter cryptosystems.

Page 28

Chapter 3

Implementation strategies and
performance analysis

3.1 Procedural description of the LEDAkem primitives

To the end of providing an efficient implementation of LEDAkem, we represented each circulant
block as a polynomial in F2[x]/〈xp + 1〉 thanks to the isomorphism previously described.
Consequently, all the involved block circulant matrices are represented as matrices of polynomials
in F2[x]/〈xp + 1〉. The polynomials are materialized employing a bit-packed form of their binary
coefficients in all the cases where the number of non null coefficients is high. In case a polynomial has
a low number of non null coefficients with respect to the maximum possible, i.e., its corresponding
circulant matrix is sparse, we represent it materializing only the positions of the one coefficients as
integers.

The LEDAkem key generation algorithm is reported in Algorithm 3.1.1, which takes as input the
QC-LDPC code parameters and yields a private- and public-key pair. The first operation performed
by the algorithm is the extraction of a private key SK as a random value, rndPrivateMatricesSeed
generated from a TRNG (line 2 in Algorithm 3.1.1) and long enough to provide the desired security
margin when deriving the secret matrices H and Q. The approach adopted to generate both the 1×
n0 block matrix H and the n0×n0 block matrix Q is to expand the value rndPrivateMatricesSeed
employing the NIST provided seed expander built on AES-256-CTR to draw random position for
the asserted coefficients of the polynomials (blocks) of the matrices (line 2 in Algorithm 3.1.1). In
case a duplicate position is drawn, it is discarded and a fresh position is drawn anew. The weights
of the blocks of Q are designed in such a fashion that it is always invertible (see Section 1.3.1).
We evaluated that repeating this generation process does not have a significant impact on the
decryption phase, and thus opted to store only the value of rndPrivateMatricesSeed as the
cipher private key SK (line 11 in Algorithm 3.1.1). Indeed, the size of H and Q during the
computation of the decryption algorithm is still rather small, as their sparsity allows for a compact
representation in memory, where only the position of the one-valued coefficients are materialized.
Given the bit-sizes of the parameters of the cryptosystem, the positions can be materialized as
either 16-bit or 32-bit integers depending on the chosen values for n0 and p. The next step of the
key generation algorithm is to compute the 1 × n0 block matrix L = HQ = [L0, L1, . . . , Ln0−1]
(lines 3–6 in Algorithm 3.1.1). We recall that, given the choice of dv odd, and

∑n0−1
i=0 mi odd,

the invertibility of the last block of L, Ln0−1 is guaranteed a priori (see Section 1.3.1). Therefore,

29

LEDAkem

Algorithm 3.1.1: LEDAkem Keygen

Input: p, n0, n, k: QC-LDPC code parameters, where p denotes a circulant block size (in
bit), and n0 denotes the number of circulant blocks of the 1× n0 parity-check
matrix of the code. n = pn0 (bit) denotes the codeword size, while k = p(n0 − 1)
(bit) denotes the information word size.
dv: odd weight of each circulant block of the parity-check matrix

H = [H0 | H1 | . . . | Hn0−1] to be generated
[m0, . . . ,mn0−1]: weight of each block of the first row of the n0 × n0 circulant block

matrix Q =

 Q0,0 . . . Q0,n0−1

...
. . .

...
Qn0−1,0 . . . Qn0−1,n0−1

 to be generated – with

(
n0−1∑
i=0

mi

)
odd

Output: (SK,PK) generated private-key/public-key pair

1 rndPrivateMatricesSeed← TRNG()
2 H,Q← GenerateHQ(n0, dv, [m0, . . . ,mn0−1], rndPrivateMatricesSeed)
3 for i = 0 to n0 − 1 do
4 Li ← 0 // null polynomial in F2[x]/〈xp + 1〉
5 for j = 0 to n0 − 1 do
6 Li ← Li +HjQj,i // polynomial mul. and add. in F2[x]/〈xp + 1〉
7 LInv← ComputeInverse(Ln0−1) // multiplicative inverse in F2[x]/〈xp + 1〉
8 for i = 0 to n0 − 2 do
9 Mi ← LInvLi // polynomial multiplication in F2[x]/〈xp + 1〉

10 PK← [M0 | . . . |Mn0−2]
11 SK← rndPrivateMatricesSeed

12 return (SK,PK)

the computation of LInv = L−1
n0−1 is performed with a single call to the polynomial inversion

algorithm (line 7 in Algorithm 3.1.1). Finally, the public key PK is generated as a 1×n0− 1 block
matrix, [M0 | . . . | Mn0−2], through multiplying LInv by all-but-the-last blocks of L (lines 8–9 in
Algorithm 3.1.1). The last multiplication can be avoided as it will yield the identity matrix which
is thus not stored in the PK (line 10 in Algorithm 3.1.1).

The encryption process for LEDAkem is remarkably simple, and is reported in Algorithm 3.1.2.
Starting from a suitably sized random value, rndErrorSeed, extracted from a TRNG (line 1 in
Algorithm 3.1.2), the encryption procedure generates an n0p bit random error vector with weight
t, obtaining the positions of the t asserted bits expanding the rndErrorSeed value via the NIST
provided AES-based seed expander. The generation of the positions of the asserted bits keeps
into account the meaning given to the mentioned random binary vector of a 1 × n0 block error
vector, e = [e0, e1, . . . , en0−1], where each component, ei, 0 ≤ i < n0, is meant to be an element in
F2[x]/〈xp + 1〉 (line 2 in Algorithm 3.1.2). Once the error vector e is generated, it is multiplied
by the 1 × n0 block matrix M = [M0 | M1 | . . . | Mn0−2 | I] (derived from the public key PK)
to obtain the syndrome s as the encapsulated (i.e., encrypted) secret error vector (lines 3 − 6 in
Algorithm 3.1.2). Since M is not entirely materialized (indeed, its last block is a p × p identity
matrix – i.e., the constant non null polynomial – and it is not stored), the multiplication [M0 | . . . |
Mn0−2 | I]eT is done multiplying the first (n0 − 1) blocks of e with the corresponding blocks of
[M0 |M1 | . . . |Mn0−2] and adding the last block of e (i.e., en0−1) to the result.
Finally, the shared secret ks is derived processing the secret error vector e with a KDF having an
output of the desired size (line 7 in Algorithm 3.1.2). We chose to employ SHA-3 as our KDF, as

Page 30

LEDAkem

Algorithm 3.1.2: LEDAkem Encrypt

Input: p, n0, n, k: QC-LDPC code parameters, where p denotes a circulant block size (in
bit), and n0 denotes the number of circulant blocks of the 1× n0 parity-check
matrix of the code. n = pn0 (bit) denotes the codeword size, while k = p(n0 − 1)
(bit) denotes the information word size.
PK = [M0 | . . . |Mn0−2]: the public key constituted by the first n0 − 1 blocks of the
1× n0 block matrix M =[M0 | . . . |Mn0−2 | I]
t: the weight of the error vector decided according to the security level

Output: ks: the secret shared among the parties
s: syndrome, corresponding to the encapsulated (encrypted) secret error vector

1 rndErrorSeed← TRNG()
2 e← GenerateSecretError(t, rndErrorSeed) // e = [e0 | e1 | . . . | en0−1]
3 tmp← 0
4 for i = 0 to n0 − 2 do
5 tmp← tmp+ eiMi

6 c = tmp+ en0−1

7 ks ← KDF(e)
8 return 〈ks, c〉

it provides digest sizes which are easily matched with the required security categories by NIST.

The decryption procedure for LEDAkem, detailed in Algorithm 3.1.3, starts by providing the
private key value SK to the NIST approved seed expander, and by recomputing the positions of the
asserted coefficients in sparse representations of the secret matrices H and Q, following the same
approach employed in the LEDAkem key generation (line 1 in Algorithm 3.1.3). During decryption
process only the the computation of the last block of the 1×n0 matrix L = HQ = [L0, . . . , Ln0−1] is
required (lines 2−4 in Algorithm 3.1.3)) Indeed, the (re)derivation of H, Q and Ln0−1 is performed
with only a minimal (< 1%) computational overhead compared with the computational cost of the
decryption operations. Following the derivation of Ln0−1 the received encrypted message s, i.e.,
the syndrome of the QC-LDPC code, is multiplied by Ln0−1 to obtain a value s′ = sLn0−1, which
is in turn passed to the Q-decoder procedure, along with the sparse representations of HT and
QT (line 6 in Algorithm 3.1.3). If the decoding procedure does not fail in recovering the error
vector e, the LEDAkem decryption procedure derives the shared secret ks processing the error
vector with the same KDF employed by the encryption primitive (line 8 in Algorithm 3.1.3). If
the decoding procedure fails, the LEDAkem decryption procedure returns a value derived from
processing through the same KDF the received encrypted message (line 10 in Algorithm 3.1.3), to
the purpose of providing the desired properties to prove the KEM-IND-CCA as reported in [30].

The decoding procedure employed in LEDAkem is detailed in Algorithm 3.1.4 and attempts at
reconstructing the secret error vector e from the received syndrome s. To this end, the peculiarity of
the Qdecode algorithm is that it directly reconstructs the value of e, where a common bit-flipping
decoder would retrieve e′ = eQT , thus requiring a further matrix multiplication to complete the
decryption action.

To perform the required syndrome decoding, Qdecode starts by computing the number of unsat-
isfied parity checks in the current syndrome in the same way a standard bit flipping algorithm does
(lines 5−9 in Algorithm 3.1.4). Our approach to implement this computation is to exploit a sparse

Page 31

LEDAkem

Algorithm 3.1.3: LEDAkem Decrypt

Input: p, n0, n, k: QC-LDPC code parameters, where p denotes a circulant block size (in
bit), and n0 denotes the number of circulant blocks of the 1× n0 parity-check
matrix of the code. n = pn0 (bit) denotes the codeword size, while k = p(n0 − 1)
(bit) denotes the information word size.
dv: odd weight of each circulant block of the parity-check matrix

H = [H0 | H1 | . . . | Hn0−1] to be generated
[m0, . . . ,mn0−1]: weight of each block of the first row of the n0 × n0 circulant block

matrix Q =

 Q0,0 . . . Q0,n0−1

...
. . .

...
Qn0−1,0 . . . Qn0−1,n0−1

 to be generated – with

(
n0−1∑
i=0

mi

)
odd

SK: private key
s: received syndrome, corresponding to the encrypted secret error vector

Output: ks: the secret shared among the parties

1 H,Q← GenerateHQ(n0, dv, [m0, . . . ,mn0−1], SK)
2 Ln0−1 ← 0
3 for i = 0 to n0 − 1 do
4 Ln0−1 ← Ln0−1 +HiQi,n0−1

5 s′ ← Ln0−1 s

6 e, decodeOk← Qdecode(s′, HT , QT)
7 if decodeOk = true then
8 ks ← KDF(e)
9 else

10 ks ← KDF(s)
11 return ks

representation for the transposition of the parity check matrix HT , which is taken as an input and
denoted as Htr in the algorithm. This, in turn, allows to reduce the number of iterations of the
innermost loop of the parity check computation (lines 7–9 in Algorithm 3.1.4) from n0p

machine word

to dv. For example, considering the case of n0 = 2, p = 25931 on the NIST reference platform
(machine word = 64) the number of iterations drops from 811 to 17.

The differentiating point between the classical bit flipping algorithm and the Q-decoding concerns
how the bits of the codeword being decoded are selected for flipping. Indeed, while employing
a classical bit flipping algorithm would flip all the positions in e′ having the highest number of
unsatisfied parity checks, the Q-decoder exploits the knowledge of the secret matrix QT to estimate
if a bit flip should be performed. To this end, the Q-decoding computes, for each bit of e being
decoded (lines 12–13 in Algorithm 3.1.4) a measure of similarity between the patterns of ones of
a row of QT , blockwise cyclically shifted by the position of the bit of e itself, and the unsatisfied
parity checks vector. If the similarity metric (lines 14–16 in Algorithm 3.1.4) is above a given
threshold, both the error vector e and the value of the syndrome s for the next iteration iter

are updated (lines 18–23 in Algorithm 3.1.4). The value of the aforementioned threshold can be
obtained as a piecewise constant function of the current syndrome weight and the code parameters.
For efficiency reasons, the function is precomputed and stored as a lookup table (LutS) containing
pairs (weight, threshold). The Q-decoder computes the weight of the syndrome and determines
the highest weight w̄ among the ones in the lookup table, which does not exceed the one of the

Page 32

LEDAkem

Algorithm 3.1.4: Qdecode

Input: s′: QC-LDPC syndrome, binary vector of size p
Htr: transposed parity-check matrix, represented as an n0 × dv integer matrix
containing the positions in {0, 1, . . . , p− 1} of the set coefficients in the n0 blocks of
HT = [HT

0 | HT
1 | . . . | HT

n0−1]

Qtr: private matrix, represented as an n0 ×m, m =
∑n0−1

i=0 mi integer matrix
containing the positions in {0, . . . , n0p− 1} of the asserted coefficients in QT rows

Output: e: the decoded error vector with size n0p
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding failure
LutS: piecewise constant function yielding the value of the bit flipping threshold of
similarity, given the syndrome weight.
It is represented as an array of (weight, threshold) pairs for all the boundary values of
the piecewise function.

1 iter← 0
2 repeat
3 unsat pc← [0 | . . . | 0] // array of n0p counters of unsatisfied parity checks

4 currSynd← s′

5 for i = 0 to n0 − 1 do
6 for exp = 0 to p− 1 do
7 for h = 0 to dv − 1 do
8 if getBlockCoefficient(currSynd, (exp + Htr[i][h]) mod p) = 1 then
9 unsat pc[i · p+ exp]← unsat pc[i · p+ exp] + 1

10 w← max({w | (w, th) ∈ LutS ∧ w < weight(currSynd)})
11 th← th | (w, th) ∈ LutS

12 for i = 0 to n0 − 1 do
13 for exp = 0 to p− 1 do
14 similarity← 0
15 for k = 0 to m− 1 do

// qrow contains the positions of the ones of a row of Q rotated intra-block by j

16 qrow[k]← Qtr[i][k]− (Htr[i][k] mod p) + ((j + Qtr[i][k]) mod p)
17 similarity← similarity + unsat pc[qrow[k]]

18 if similarity ≥ th then
19 e[i · p+ j]← e[i · p+ j]⊕ 1
20 for k = 0 to m− 1 do
21 for h = 0 to dv − 1 do
22 idx← (Htr[qrow[k]/p][h] + (qrow[k] mod p)) mod p
23 s′[idx]← s′[idx]⊕ 1

24 iter← iter + 1

25 until s′ 6= 0 and iter < imax

26 if s′ = 0 then
27 return e, true
28 return e, false

syndrome (line 10 in Algorithm 3.1.4). The threshold for the similarity is selected as the one paired
to w̄ in LutS (line 11 in Algorithm 3.1.4).

Page 33

LEDAkem

Table 3.1: Running times for key generation, encryption and decryption as a function of the chosen
category and the number of circulant blocks n0 on an AMD Ryzen 5 1600 CPU at 3.2 GHz.

Category n0
KeyGen Encrypt Decrypt Total CPU time

(ms) (ms) (ms) Ephemeral KEM (ms)

1
2 34.11 (±1.07) 2.11 (±0.08) 16.78 (±0.53) 52.99
3 16.02 (±0.26) 2.15 (±0.17) 21.65 (±1.71) 39.81
4 13.41 (±0.23) 2.42 (±0.08) 24.31 (±0.86) 40.14

2–3
2 142.71 (±1.52) 8.11 (±0.21) 48.23 (±2.93) 199.05
3 76.74 (±0.78) 8.79 (±0.20) 49.15 (±2.20) 134.68
4 54.93 (±0.84) 9.46 (±0.28) 46.16 (±2.03) 110.55

4–5
2 427.38 (±5.15) 23.00 (±0.33) 91.78 (±5.38) 542.16
3 227.71 (±1.71) 24.85 (±0.37) 92.42 (±4.50) 344.99
4 162.34 (±2.39) 26.30 (±0.53) 127.16 (±4.42) 315.80

3.2 Benchmarks on a NIST compliant platform

We provide the results of a set of execution time benchmarks performed on the reference imple-
mentation provided in the submission package. Currently, no platform specific optimizations are
in place, thus we expect these results to be quite consistent across different platforms.

The results were obtained measuring the required time for key generation, encryption (key en-
capsulation) and decryption (key decapsulation) as a function of the chosen security category and
number of circulant blocks n0. The measurements reported are obtained as the average of 100 exe-
cutions of the reference implementation compiled with gcc 6.3.0 from Debian 9 amd64. Given the
NIST requirement on the reference computing platform (an Intel x86 64 CPU) we instructed gcc

to employ the most basic instruction set among the ones fitting the description (-march=nocona
option). The generated binaries were run on an AMD Ryzen 5 1600 CPU at 3.2 GHz, locking the
frequency scaling to the top frequency.

Table 3.1 reports the running times measured employing the clock gettime primitive, selecting the
CLOCK PROCESS CPUTIME ID as the timer of choice, obtaining the CPU time taken by the process.
As it can be noticed, the most computationally demanding primitive is the key generation, which
has more than 80% of its computation time taken by the execution of a single modular inverse in
F2[x]/〈xp+ 1〉 required to obtain the value of L−1

n0−1. The encryption primitive is the fastest among
all, and its computation time is substantially entirely devoted (> 99%) to the n0 − 1 polynomial
multiplications performing the encryption. The decryption primitive computation is dominated by
the Q-decoder computation (> 95% of the time), with a minimal portion taken by the n0 modular
multiplications which reconstruct Ln0−1 and the one to compute the private syndrome fed into the
Q-decoder.

Considering the computational cost of performing a KEM with ephemeral keys, the most advanta-
geous choice is to pick n0 = 4 for any security level, although the computational savings are more
significant when considering high-security parameter choices (Category 3 and Category 5).

Table 3.2 reports the sizes of both the keypairs and the encapsulated secrets for LEDAkem. In
particular, regarding the size of the private keys of LEDAkem we report both the size of the stored
private key, i.e. the size of the rndPrivateMatricesSeed extracted from the system TRNG, and the

Page 34

LEDAkem

Table 3.2: Sizes of the keypair and encapsulated shared secret as a function of the chosen category
and number of circulant blocks n0

Category n0
Private Key Size (B) Public Key Shared secret Enc secret

At rest In memory size (B) size (B) size (B)

1
2 24 668 3, 480 3, 480 32
3 24 844 4, 688 2, 344 32
4 24 1, 036 6, 408 2, 136 32

2–3
2 32 972 7, 200 7, 200 48
3 32 1, 196 10, 384 5, 192 48
4 32 1, 364 13, 152 4, 384 48

4–5
2 40 1, 244 12, 384 12, 384 64
3 40 1, 548 18, 016 9, 008 64
4 40 1, 772 22, 704 7, 568 64

required amount of main memory to store the expanded key during the decryption phase. We note
that the private key sizes are the minimum possible, as the rndPrivateMatricesSeed extracted
from the system TRNG should be incompressible. We employ as a rndPrivateMatricesSeed size
of 192, 256 and 320 bits for security categories 1, 3, and 5, respectively, to provide a simple hedging
against multi key attacks, as suggested on the NIST forum, and in the NIST frequently asked
questions section of the call. We note that, for a given security category, increasing the value of
n0 enlarges the public key, as it is constituted of (n0 − 1)p bits. This increase in the size of the
public key represents a tradeoff with the decrease of the size of the ciphertext to be transmitted
since it is only p bits long, and p decreases if a larger number of blocks is selected, for a fixed
security category. The size of the derived encapsulated secret is at least 256 bits, in order to meet
the requirement reported in the NIST call for proposals, Section 3, item 3.b. The shared secret
is derived employing the SHA-3 hash function with a 256, 384 or 512 bits digest, so to match the
requirements of categories 1, 3, and 5, respectively.

Possible optimizations. Starting from the platform-agnostic reference implementation provided
in this submission, a number of optimizations can be applied to improve the running time of
LEDAkem. First of all, implementing a sub-quadratic multiplication for the elements of F2[x]/〈xp+
1〉, for which the best candidate for the NIST reference platform appears to be the Toom-Cook
method in either its Toom-3 or its Toom-4 variant [10], is expected to reduce the time required to
compute the encryption primitive quite significantly. The optimal choice of the Toom-Cook variant
will also be dependent on the availability on the underlying CPU of binary polynomial multiplication
instructions, also known as carryless multiplications. Indeed, such instructions, present on both
modern x84 64 and ARM ISAs provide significant speedups in single-precision binary polynomial
multiplication.

Providing a specialized procedure for the modular inverse in F2[x]/〈xp+1〉, where both the guaran-
teed invertibility of the element at hand, and the low weight nature of the modulus are taken into
account is expected to provide a significant speedup to the key generation phase, which is dominated
by a single instance of such computation. Finally, exploiting the presence of vector instructions to
perform modular addition will also provide performance boosts, as it provides an effective way of
exploiting the large amount of data parallelism present in the computational primitives employed.

Page 35

LEDAkem

2 3 4 5 6

0

50

100

Number of Iterations

D
ec

o
d

ed
m

es
sa

g
es

(%
)

n0=2

n0=3

n0=4

(a) Category 1

2 3 4 5 6

0

50

100

Number of Iterations

D
ec

o
d

ed
m

es
sa

g
es

(%
)

n0=2

n0=3

n0=4

(b) Category 2–3

2 3 4 5 6

0

50

100

Number of Iterations

D
ec

o
d

ed
m

es
sa

g
es

(%
)

n0=2

n0=3

n0=4

(c) Category 4–5

Figure 3.1: Percentage of decoded messages as a function of the number of iterations taken to the
Q-decoder to converge

3.3 Protection against side-channel attacks

The two most common side channels exploited to breach practical implementations of cryptosys-
tems are the execution time of the primitive and the instantaneous power consumption during
its computation. In particular, in [13], it was shown how a QC-LDPC code-based system can
be broken by means of simple power analysis, exploiting the control-flow dependent differences of
the decoding algorithm examined. Furthermore, [33] provides the first practical evidence of a side
channel attack relying on differential power analysis to extract the positions of the ones in the pri-
vate parity-check matrix, hence exploiting dataflow dependencies. However, linear error correcting
codes are amenable to extremely efficient countermeasures against power consumption-based side
channel attacks due to the linear nature of the operations involved in the decoding process. Indeed,
the same [33] provided a simple, but effective, countermeasure against differential power analysis
through adding a random codeword to the input vector before computing the syndrome. We note
that employing ephemeral keys provides a natural layer of resistance against non-profiled power
consumption side channel attacks. However, it may be possible to employ profiled side channel
attack techniques to overcome this layer of protection, and against which the linearity of error
correcting codes may be again exploited to devise efficient countermeasures.

Concerning execution time side channel information leakage, the main portion of the LEDAkem
decryption algorithm which is not characterized by a constant execution time is decoding. Indeed,
the number of iterations made by the decoder depends on the values being processed. Willing to
provide a first quantitative estimate of the information leakage stemming by such a timing variation,
Figure 3.1 reports the percentage of decoding actions taking a given number of iterations to perform
a correct decode action during our DFR characterization campaign, i.e. over at least 108 decoding
actions for each category/n0 value pair. As it can be seen, the vast majority of decoding actions are
completed in the same number of iterations. To provide a quantitative estimate of the information
which may be obtained, we note that, considering the number of iterations required to perform a
decode action as a random variable over the integers, and considering the frequencies divided by
the total amount of decoding actions as a rough estimate of the actual probabilities, we obtain that
the entropy of the random variables considered is between 0.21 and 0.01 bits per symbol, which
is a quite limited amount of information. Nonetheless, it is possible to achieve a constant time
decoding simply modifying the algorithm so that it always run for the maximum needed amount

Page 36

LEDAkem

of iterations to achieve the desired DFR. Such a choice completely eliminates the timing leakage,
albeit trading it off for a performance penalty.

3.4 KAT values

Known answer tests generated for 100 runs of LEDAkem can be found in the KAT directory of the
submission package. The naming convention of the req/rsp file pairs is the following:

PQCkemKAT <private key size> <value of the n0 parameter>.req

PQCkemKAT <private key size> <value of the n0 parameter>.rsp

In the following we report the SHA-2-256 digests of the KAT files, as obtainable via sha256sum or
an analogous tool.

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_24_2.req

f7f6d1efb7ea980e20b7799b572a5306aedcee6c47e735b7b8cf0070ee97bfd8 PQCkemKAT_24_2.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_24_3.req

3da4e79b11f6791330718aca980ce6877ed8665c120a2dd6375e284e7d115af4 PQCkemKAT_24_3.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_24_4.req

39b1be9b7291ddf725cc664d5e2231b7e8a599c8ea1e4591adbd80413487b82a PQCkemKAT_24_4.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_32_2.req

ba5eb32705e31a319aad44bf9269e08ab39ac06c3f8a19d3329efcf768aa7e3f PQCkemKAT_32_2.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_32_3.req

8e87ad90886615deabb8876fc33fb1dec2127c376fdb9e987a9492b571fabe21 PQCkemKAT_32_3.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_32_4.req

13d6e728babc1d617dcf3674efb72a4f40dcef7dbbca290865046ec3a1df933f PQCkemKAT_32_4.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_40_2.req

6a2b181fefc855afb634be6f108416115c8081faf377687efb8c5303f8d61dd0 PQCkemKAT_40_2.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_40_3.req

6dd8003901593707fab42bd1e0b9ce2875d9cdd9bd9f5e11d23e10770fc0a5f1 PQCkemKAT_40_3.rsp

36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa PQCkemKAT_40_4.req

f2eacd9f6ed199d43a87e90066f613af7b16e725b7427fa241ad36d6a1bc48d6 PQCkemKAT_40_4.rsp

Page 37

Chapter 4

Summary of advantages and
limitations

+ Built on an NP-complete problem under reasonable assumptions.

+ Exploits improved BF decoders which are faster than classical BF decoders.

+ Compact keypairs (below 23 kiB at most), minimum size private keys.

+ Requires only addition and multiplication over F2[x], and modular inverse over F2[x]/〈xp+1〉
besides single-precision integer operations.

+ Fully patent free, self contained, public domain codebase written in ANSI-C-99.

+ Easy to integrate in existing cryptographic libraries.

+ Particularly efficient to apply countermeasures against non-profiled power consumption and
electromagnetic emissions side channel attacks.

38

Bibliography

[1] M. Baldi, M. Bianchi, and F. Chiaraluce, “Optimization of the parity-check matrix density
in QC-LDPC code-based McEliece cryptosystems,” in Proc. IEEE ICC 2013 - Workshop on
Information Security over Noisy and Lossy Communication Systems, Budapest, Hungary, Jun.
2013.

[2] M. Baldi, M. Bodrato, and F. Chiaraluce, “A new analysis of the McEliece cryptosystem
based on QC-LDPC codes,” in Security and Cryptography for Networks, ser. Lecture Notes in
Computer Science. Springer Verlag, 2008, vol. 5229, pp. 246–262.

[3] M. Baldi and F. Chiaraluce, “Cryptanalysis of a new instance of McEliece cryptosystem based
on QC-LDPC codes,” in Proc. IEEE International Symposium on Information Theory (ISIT
2007), Nice, France, Jun. 2007, pp. 2591–2595.

[4] M. Baldi, QC-LDPC Code-Based Cryptography, ser. SpringerBriefs in Electrical and Computer
Engineering. Springer International Publishing, 2014.

[5] M. Baldi, M. Bianchi, and F. Chiaraluce, “Security and complexity of the McEliece cryptosys-
tem based on QC-LDPC codes,” IET Information Security, vol. 7, no. 3, pp. 212–220, Sep.
2012.

[6] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random binary linear codes in 2n/20:
How 1 + 1 = 0 improves information set decoding,” in Advances in Cryptology - EUROCRYPT
2012, ser. Lecture Notes in Computer Science, D. Pointcheval and T. Johansson, Eds. Springer
Verlag, 2012, vol. 7237, pp. 520–536.

[7] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability of certain
coding problems,” IEEE Trans. Inform. Theory, vol. 24, no. 3, pp. 384–386, May 1978.

[8] D. J. Bernstein, T. Lange, and C. Peters, “Smaller decoding exponents: ball-collision decod-
ing,” in CRYPTO 2011, ser. Lecture Notes in Computer Science. Springer Verlag, 2011, vol.
6841, pp. 743–760.

[9] E. Bernstein and U. V. Vazirani, “Quantum complexity theory,” SIAM J. Comput., vol. 26,
no. 5, pp. 1411–1473, Oct. 1997.

[10] M. Bodrato, “Towards optimal Toom-Cook multiplication for univariate and multivariate poly-
nomials in characteristic 2 and 0,” in WAIFI 2007 proceedings, ser. Lecture Notes in Computer
Science, C. Carlet and B. Sunar, Eds., vol. 4547. Springer Verlag, June 2007, pp. 116–133.

[11] R. Canto Torres and N. Sendrier, Analysis of Information Set Decoding for a Sub-linear
Error Weight. Springer International Publishing, 2016, pp. 144–161. [Online]. Available:
https://doi.org/10.1007/978-3-319-29360-8 10

[12] S. de Vries, “Achieving 128-bit security against quantum attacks in OpenVPN,” Master’s
thesis, University of Twente, August 2016. [Online]. Available: http://essay.utwente.nl/70677/

39

LEDAkem

[13] T. Fabšič, O. Gallo, and V. Hromada, “Simple power analysis attack on the QC-LDPC
McEliece cryptosystem,” Tatra Mountains Mathematical Publications, vol. 67, no. 1, pp. 85–92,
Sep. 2016.

[14] T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and T. Johansson, “A reaction attack
on the QC-LDPC McEliece cryptosystem,” in Post-Quantum Cryptography: 8th International
Workshop, PQCrypto 2017, T. Lange and T. Takagi, Eds. Utrecht, The Netherlands: Springer
International Publishing, Jun. 2017, pp. 51–68.

[15] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Strongly secure authenticated key
exchange from factoring, codes, and lattices,” Des. Codes Cryptography, vol. 76, no. 3, pp.
469–504, 2015. [Online]. Available: https://doi.org/10.1007/s10623-014-9972-2

[16] R. G. Gallager, Low-Density Parity-Check Codes. M.I.T. Press, 1963.

[17] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proc. 28th Annual
ACM Symposium on the Theory of Computing, Philadephia, PA, May 1996, pp. 212–219.

[18] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on MDPC with CCA security
using decoding errors,” in Advances in Cryptology – ASIACRYPT 2016, ser. Lecture Notes in
Computer Science, J. H. Cheon and T. Takagi, Eds. Springer Berlin Heidelberg, 2016, vol.
10031, pp. 789–815.

[19] Y. Hamdaoui and N. Sendrier, “A non asymptotic analysis of information set decoding,”
Cryptology ePrint Archive, Report 2013/162, 2013, https://eprint.iacr.org/2013/162.

[20] H. Krawczyk, “Perfect forward secrecy,” in Encyclopedia of Cryptography and Security, 2nd
Ed., H. C. A. van Tilborg and S. Jajodia, Eds. Springer, 2011, pp. 921–922. [Online].
Available: https://doi.org/10.1007/978-1-4419-5906-5 90

[21] P. Lee and E. Brickell, “An observation on the security of McEliece’s public-key cryptosystem,”
in Advances in Cryptology - EUROCRYPT 88. Springer Verlag, 1988, vol. 330, pp. 275–280.

[22] J. Leon, “A probabilistic algorithm for computing minimum weights of large error-correcting
codes,” IEEE Trans. Inform. Theory, vol. 34, no. 5, pp. 1354–1359, Sep. 1988.

[23] Y. X. Li, R. Deng, and X. M. Wang, “On the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems,” IEEE Trans. Inform. Theory, vol. 40, no. 1, pp. 271–273, Jan.
1994.

[24] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved low-density parity-
check codes using irregular graphs,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 585–598,
Feb. 2001.

[25] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes in O(20.054n),” in ASI-
ACRYPT 2011, ser. Lecture Notes in Computer Science. Springer Verlag, 2011, vol. 7073,
pp. 107–124.

[26] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory.” DSN Progress
Report, pp. 114–116, 1978.

[27] R. Misoczki, J. P. Tillich, N. Sendrier, and P. S. L. M. Barreto, “Mdpc-mceliece: New mceliece
variants from moderate density parity-check codes,” in 2013 IEEE International Symposium
on Information Theory, July 2013, pp. 2069–2073.

[28] R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin, and J. Buchmann, “On lower bounds for
information set decoding over fq and on the effect of partial knowledge,” Int. J. Inf. Coding
Theory, vol. 4, no. 1, pp. 47–78, Jan. 2017.

Page 40

LEDAkem

[29] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Probl. Contr.
and Inform. Theory, vol. 15, pp. 159–166, 1986.

[30] E. Persichetti, Secure and Anonymous Hybrid Encryption from Coding Theory. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 174–187.

[31] C. Peters, “Information-set decoding for linear codes over Fq,” in Post-Quantum Cryptography,
ser. Lecture Notes in Computer Science. Springer Verlag, 2010, vol. 6061, pp. 81–94.

[32] E. Prange, “The use of information sets in decoding cyclic codes,” IRE Transactions on In-
formation Theory, vol. 8, no. 5, pp. 5–9, Sep. 1962.

[33] M. Rossi, M. Hamburg, M. Hutter, and M. E. Marson, A Side-Channel Assisted Cryptanalytic
Attack against QcBits. Cham: Springer International Publishing, 2017, pp. 3–23.

[34] N. Sendrier, “Decoding one out of many,” in Post-Quantum Cryptography, ser. Lecture Notes
in Computer Science, B.-Y. Yang, Ed. Springer Verlag, 2011, vol. 7071, pp. 51–67.

[35] M. K. Shooshtari, M. Ahmadian-Attari, T. Johansson, and M. R. Aref, “Cryptanalysis of
McEliece cryptosystem variants based on quasi-cyclic low-density parity check codes,” IET
Information Security, vol. 10, no. 4, pp. 194–202, Jun. 2016.

[36] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, Oct. 1997.

[37] J. Stern, “A method for finding codewords of small weight,” in Coding Theory and Applications,
ser. Lecture Notes in Computer Science, G. Cohen and J. Wolfmann, Eds. Springer Verlag,
1989, vol. 388, pp. 106–113.

[38] R. Townsend and E. J. Weldon, “Self-orthogonal quasi-cyclic codes,” IEEE Trans. Inform.
Theory, vol. 13, no. 2, pp. 183–195, Apr. 1967.

[39] C. Xing and S. Ling, Coding Theory: A First Course. New York, NY, USA: Cambridge
University Press, 2003.

Page 41

Statement by Each Submitter

I, Marco Baldi, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, ref-
erence implementation, or optimized implementations that I have submitted, known as LEDAkem,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAkem.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Marco Baldi, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted ref-
erence implementation and optimized implementations and hereby grant the U.S. Government and
any interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected for stan-
dardization and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Alessandro Barenghi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, do hereby declare that the
cryptosystem, reference implementation, or optimized implementations that I have submitted, known
as LEDAkem, is my own original work, or if submitted jointly with others, is the original work of
the joint submitters. I further declare that I do not hold and do not intend to hold any patent or
patent application with a claim which may cover the cryptosystem, reference implementation, or
optimized implementations that I have submitted, known as LEDAkem.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Alessandro Barenghi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, am one of the owners of
the submitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based upon,
distribute copies of, and display such implementations for the purposes of the post-quantum algo-
rithm public review and evaluation process, and implementation if the corresponding cryptosystem
is selected for standardization and as a standard, notwithstanding that the implementations may be
copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Franco Chiaraluce, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, ref-
erence implementation, or optimized implementations that I have submitted, known as LEDAkem,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAkem.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Franco Chiaraluce, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted ref-
erence implementation and optimized implementations and hereby grant the U.S. Government and
any interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected for stan-
dardization and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Gerardo Pelosi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingeg-
neria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, do hereby declare that the cryptosystem,
reference implementation, or optimized implementations that I have submitted, known as LEDAkem,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAkem.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Gerardo Pelosi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingeg-
neria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, am one of the owners of the submitted
reference implementation and optimized implementations and hereby grant the U.S. Government
and any interested party the right to reproduce, prepare derivative works based upon, distribute
copies of, and display such implementations for the purposes of the post-quantum algorithm public
review and evaluation process, and implementation if the corresponding cryptosystem is selected for
standardization and as a standard, notwithstanding that the implementations may be copyrighted
or copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Paolo Santini, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, ref-
erence implementation, or optimized implementations that I have submitted, known as LEDAkem,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAkem.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Paolo Santini, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted ref-
erence implementation and optimized implementations and hereby grant the U.S. Government and
any interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected for stan-
dardization and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed:

Title:

Date:

Place:

