
LEDAcrypt: Low-dEnsity parity-check
coDe-bAsed cryptographic systems

Specification revision 2.0 – March 30, 2019

Name of the proposed cryptosystem

LEDAcrypt (Low-dEnsity parity-check coDe-bAsed cryptographic systems)

Submitters

This submission is from the following team, listed in alphabetical order:

• Marco Baldi, Università Politecnica delle Marche, Ancona, Italy
• Alessandro Barenghi, Politecnico di Milano, Milano, Italy
• Franco Chiaraluce, Università Politecnica delle Marche, Ancona, Italy
• Gerardo Pelosi, Politecnico di Milano, Milano, Italy
• Paolo Santini, Università Politecnica delle Marche, Ancona, Italy

E-mail addresses: m.baldi@univpm.it, alessandro.barenghi@polimi.it, f.chiaraluce@univpm.it,
gerardo.pelosi@polimi.it, p.santini@pm.univpm.it.

Contact telephone and address

Marco Baldi (phone: +39 071 220 4894), Università Politecnica delle Marche, Dipartimento di
Ingegneria dell’Informazione (DII), Via Brecce Bianche 12, I-60131, Ancona, Italy.

Names of auxiliary submitters

There are no auxiliary submitters. The principal submitter is the team listed above.

Name of the inventors/developers of the cryptosystem

Same as submitters.

Name of the owner, if any, of the cryptosystem

Same as submitters.

Backup contact telephone and address

Gerardo Pelosi (phone: +39 02 2399 3476), Politecnico di Milano, Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy.

Signature of the submitter1

×
1See also printed version of “Statement by Each Submitter”.

LEDAcrypt

Page 3

Contents

Foreword 8

1 Complete written specification 10

1.1 Preliminaries . 11

1.1.1 Finite fields and circulant matrix algebra . 11

1.1.2 Quasi-cyclic low-density parity-check codes and their efficient decoding 14

1.1.3 Classic code-based cryptosystems . 18

1.2 QC-LDPC code-based McEliece and Niederreiter cryptosystems 20

1.3 Description of LEDAcrypt KEM . 26

1.4 Description of LEDAcrypt PKC . 27

1.4.1 Encryption and decryption transformations for Indistinguishability Under
Adaptive Chosen Ciphertext Attack (IND-CCA2) 28

1.4.2 Constant weight encoding/decoding . 30

1.5 Efficient decoding for LEDAcrypt primitives . 31

1.5.1 Q-decoder features . 34

1.5.2 Choice of the Q-decoder decision thresholds 35

1.6 Analysis of the decryption failure rate . 38

1.6.1 Null DFR for a single Q-decoder iteration . 38

1.6.2 Efficient computation of t̄ . 40

1.6.3 Probabilistic analysis of the first iteration of the Q-decoder 41

1.6.4 DFR characterization for a two-iteration Q-decoder 43

2 Security analysis of LEDAcrypt 44

2.1 Security level goals . 44

4

LEDAcrypt

2.2 Hardness of the underlying problem . 45

2.3 Attacks based on exhaustive key search . 46

2.4 Attacks based on information set decoding . 47

2.4.1 Key recovery attacks based on information set decoding 48

2.5 Attacks based on Bob’s reactions . 50

2.5.1 Effects on instances with ephemeral keys and accidental key reuse 51

2.5.2 Effects on instances with long term keys . 51

3 LEDAcrypt Parameters 53

3.1 Parameters for LEDAcrypt instances with ephemeral keys 57

3.1.1 Resulting computational complexity of attacks 57

3.2 Parameters for LEDAcrypt instances with long term keys 59

4 Performance of the LEDAcrypt primitives 61

4.1 Performance of the LEDAcrypt primitives . 61

4.2 Known Answer Test values . 65

5 Summary of advantages and limitations 66

Bibliography 67

A Estimate of the rejection rate 71

Page 5

Acronyms

BF Bit Flipping

BQP Bounded-error Quantum Polynomial

CCA2 Adaptive Chosen Ciphertext Attack

DFR Decoding Failure Rate

DRBG Deterministic Random Bit Generator

GRS Generalized Reed-Solomon

IND-CCA2 Indistinguishability Under Adaptive Chosen Ciphertext Attack

IND-CPA Indistinguishability Under Chosen Plaintext Attack

ISD Information Set Decoding

KEM Key Encapsulation Module

KEM+DEM Key Encapsulation Module + Data Encapsulation Mechanism

KI Kobara-Imai

LDPC Low-Density Parity-Check

NP Nondeterministic-Polynomial

OW-CPA One Wayness against Chosen Plaintext Attack

PFS Perfect Forward Secrecy

PKC Public-Key Cryptosystem

PKE Public-Key Encryption

PRNG Pseudo Random Number Generator

QROM Quantum Random Oracle Model

QC Quasi-Cyclic

QC-LDPC Quasi-Cyclic Low-Density Parity-Check

QC-MDPC Quasi-Cyclic Moderate-Density Parity-Check

6

LEDAcrypt

ROM Random Oracle Model

SDP Syndrome Decoding Problem

TRNG True Random Number Generator

Page 7

Foreword

This document provides a complete and detailed specification of the post-quantum cryptographic
primitives named LEDAcrypt (Low-dEnsity parity-check coDe-bAsed cryptographic systems), sub-
mitted to the 2nd round of NIST post-quantum contest [1]. LEDAcrypt is the result of the merger
between the LEDAkem and LEDApkc proposals submitted to the 1st round of the contest [33], from
which a Key Encapsulation Module (KEM) named LEDAcrypt KEM and a Public-Key Cryptosys-
tem (PKC) named LEDAcrypt PKC have been respectively derived. In particular, LEDAcrypt
takes into account the suggestions that were made in the NIST Internal Report 8240 in the tweaks
made to the original submission.

Following the merger, LEDAcrypt includes:

• A revised specification of LEDAcrypt KEM with (compact) ephemeral keys (including minor
tweaks and implementation optimizations), with Indistinguishability Under Chosen Plaintext
Attack (IND-CPA) security guarantees. Parameters are proposed for security level 1, 3,
and 5, and with three distinct rates of the underlying Quasi-Cyclic Low-Density Parity-
Check (QC-LDPC) codes.

• A new specification of LEDAcrypt KEM with long-term keys aimed to key encapsulation
mechanism + data encapsulation mechanism (KEM+DEM) applications, providing IND-CCA2
security guarantees. Parameters are proposed for security level 1, 3, and 5, with a single rate
(i.e., 1

2) of the QC-LDPC code for all of them.

• A revised specification of LEDAcrypt PKC with long-term keys as an alternate solution of
the KEM+DEM one. optimizing bandwidth usage in case of “short” messages, providing
IND-CCA2 security guarantees. Parameters are proposed for security level 1, 3, and 5, with
a single rate (i.e., 1

2) of the QC-LDPC code for all of them.

The following is a list of the tweaks applied to the LEDAcrypt cryptosystems:

• We took into account the possibility of performing an enumerative attack on a part of the
secret key alone (namely, either one of the matrices H and Q) when selecting the parameters.
While no practical attack takes advantage from this, we added this conservative measure to
the parameter design procedure to provide a further hedge to attacks exploiting the additional
structure of LEDAcrypt’s secret codes.

• We introduced a rejection sampling phase during the key generation process to ensure that
the weight of the product of the two secret matrices is maximal. While the odds of having
a significant reduction in the weight of the product are definitely low, we maintain that the

8

LEDAcrypt

computational cost of the rejection sampling is negligible, and so is the reduction to the
keyspace. Such a rejection sampling procedure also permits us to provide a simpler analysis
of the Decoding Failure Rate (DFR) of our codes and makes LEDAcrypt more prone to
constant time implementation.

• We developed a theoretical characterization of the DFR for LEDAcrypt instances with long
terms keys, avoiding the need of resorting to Monte Carlo simulations. Such a technique
permits us to propose parameters such that the resulting code will have DFR low enough to
provide IND-CCA2 guarantees for long term key pairs.

• The DFR analysis also relies on a variant of the Q-decoder we have proposed since the
original submission, which always runs in two iterations. Such a feature removes the side
channel leakage coming from the number of iterations made by the decoder.

• We employed one of the constructions reported in “A modular analysis of the Fujisaki-
Okamoto transformation” by D. Hofheinz, K. Hövelmanns and E. Kiltz, (TCC 2017) to
build LEDAcrypt KEM providing IND-CCA2 in the random oracle model. The same con-
struction was proven to have IND-CCA2 guarantees in a subsequent work by H. Jiang, Z.
Zhang and Z. Ma, “Tighter security proofs for generic key encapsulation mechanism in the
quantum random oracle model”, which is going to appear in PQCrypto 2019 (eprint available
at https://eprint.iacr.org/2019/134).

• We provide an algorithmic parameter design procedure for LEDAcrypt, derived from the
analysis reported in our last official comment, and taking into account a logarithmic cost of
memory access in analyzing Information Set Decoding (ISD) algorithms.

• We provide an optimized implementation of LEDAcrypt KEM and LEDAcrypt PKC exploit-
ing GCC intrinsics for the Intel AVX2 ISA extensions, while providing pure C99 fallback
implementations to retain portability.

Page 9

Chapter 1

Complete written specification

LEDAcrypt includes a KEM built from the Niederreiter cryptosystem, named LEDAcrypt KEM,
and a PKC built from the McEliece cryptosystem, named LEDAcrypt PKC, both based on linear
error-correcting codes. In particular, the following sets of instances are proposed:

i. One set of instances of LEDAcrypt KEM with ephemeral keys and IND-CPA, with additional
resilience to accidental key reuse,

ii. One set of instances of LEDAcrypt KEM with long-lasting keys and IND-CCA2,

iii. One set of instances of LEDAcrypt PKC with long-lasting keys and IND-CCA2.

LEDAcrypt exploits the advantages of relying on QC-LDPC codes providing high decoding speeds
and compact key pairs [3, 5], with the following main features:

i. A new decoding algorithm called Q-decoder is designed: it provides faster decoding than
the classic Bit Flipping (BF) decoder, saves a computationally demanding matrix inverse
computation, and allows a reduction in the required private key storage.

ii. A theoretical model is provided to predict the DFR due to decoding failures.

iii. LEDAcrypt KEM implements a KEM with IND-CPA and employs ephemeral keys to foil
statistical attacks such as the one reported in [10].

iv. LEDAcrypt PKC implements a PKC with IND-CCA2 by employing a fully fledged conversion
of the type described in [24,25] and parameterizations that guarantee sufficiently low DFR.

v. Instances of LEDAcrypt KEM with sufficiently low DFR and IND-CCA2 are also proposed.

The main known attacks against these systems are those applicable against QC-LDPC code-based
cryptosystems [3], which have been studied for twelve years since the first proposal appeared in [2],
plus statistical attacks recently introduced in [10, 18]. We carefully analyze their capabilities and
address parameterization for the LEDAcrypt primitives to provide the required security guarantees
taking into account the computational cost reduction following from the use of a quantum computer
in the solution of the underlying computationally hard problems.

10

LEDAcrypt

1.1 Preliminaries

In this section we provide a set of background notions and nomenclature concerning finite fields
and circulant matrix algebra, binary error correcting codes, and code-based cryptosystems, which
will be employed in LEDAcrypt.

1.1.1 Finite fields and circulant matrix algebra

A v × v circulant matrix A is a matrix having the following form

A =

a0 a1 a2 · · · av−1

av−1 a0 a1 · · · av−2

av−2 av−1 a0 · · · av−3
...

...
...

. . .
...

a1 a2 a3 · · · a0

 . (1.1)

According to its definition, any circulant matrix has a constant row and column weight, i.e., it is
regular, since all its rows and columns are cyclic shifts of the first row and column, respectively.

A Quasi-Cyclic (QC) matrix is a matrix having the following form

B =

B0,0 B0,1 . . . B0,w−1

B1,0 B1,1 . . . B1,w−1
...

...
. . .

...
Bz−1,0 Bz−1,1 . . . Bz−1,w−1

 , (1.2)

where w and z are two positive integers and each block Bi,j is a circulant matrix.

The set of v × v binary circulant matrices forms an algebraic ring under the standard operations
of modulo-2 matrix addition and multiplication. The zero element is the all-zero matrix, and the
identity element is the v × v identity matrix. The algebra of the polynomial ring F2[x]/〈xv + 1〉 is
isomorphic to the ring of v × v circulant matrices over F2 with the following map

A↔ a (x) =

v−1∑
i=0

aix
i. (1.3)

According to (1.3), any binary circulant matrix is associated to a polynomial in the variable x
having coefficients over F2 that coincide with the entries in the first row of the matrix

a (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ av−1x
v−1. (1.4)

In addition, according to (1.3), the all-zero circulant matrix corresponds to the null polynomial and
the identity matrix to the unitary polynomial.

The ring of polynomials F2[x]/〈xv + 1〉 includes elements that are zero divisors: such elements
are mapped onto singular circulant matrices over F2. Avoiding such matrices is important in the
computation of the LEDAcrypt primitives, as non-singular v × v circulant matrices are required.
However, a proper selection of the size v of a circulant matrix allows to easily generate invertible
instances of it as described in the following.

Page 11

LEDAcrypt

Polynomial inversion in a finite field In order to provide efficient execution for the LEDAcrypt
primitives, it is crucial to be able to efficiently check invertibility of a binary circulant matrix, and
to generate a non-singular circulant matrix efficiently. To this end, we exploit the isomorphism (1.3)
between p×p binary circulant matrices and polynomials in F2[x]/〈xp+1〉, turning the problem into
providing an efficient criterion for the invertibility of an element of F2[x]/〈xp + 1〉 and describing
an efficient way to generate such invertible polynomials. In the following, we recall some facts
from finite field theory, and we derive a necessary and sufficient condition for the invertibility of
an element of F2[x]/〈xp + 1〉, provided p is chosen according to the described criterion. Let Fqm be
the finite field of cardinality qm, with q a prime power and m a positive integer; given an element
α ∈ Fqm , the following propositions hold [44]:

(i) The minimal polynomial of α with respect to Fq, i.e., the nonzero monic polynomial f(x) ∈
Fq[x] of the least degree such that f(α) = 0, always exists, it is unique, and it is also irreducible
over Fq.

(ii) If a monic irreducible polynomial g(x) ∈ Fq[x] has α ∈ Fqm as a root, then it is the minimal
polynomial of α with respect to Fq.

Definition 1.1.1 Let n be a positive integer and q a prime power such that gcd(n, q) = 1, which
means that n and q are coprime. A cyclotomic coset of q mod n containing the value a ∈ Zn is
defined as

Ca = {aqj mod n : j = 0, 1, . . .}.

A subset {a1, . . . , as} ⊆ Zn is named as a complete set of representatives of cyclotomic cosets of

q mod n if ∀ i 6= j Cai ∩ Caj = ∅ and
s⋃
j

Caj = Zn.

It is worth noting that the previous definition allows to easily infer that two cyclotomic cosets are
either equal or disjoint. Indeed, given two cyclotomic cosets Ca1 and Ca2 , with a1 6= a2 mod n, if
Ca1 ∩Ca2 6= ∅, two positive integers j and k such that a1q

j = a2q
k mod n should exist. Assuming

(without loss of generality) that k ≥ j, the condition gcd(n, q) = 1 would ensure the existence of the
multiplicative inverse of q and consequentially that a1 = a2q

k−j mod n, which in turn would imply
that the cyclotomic coset including a1 is a subset of the coset including a2, i.e., Ca1 ⊆ Ca2 . However,
as the previous equality can be rewritten as a2 = a1(q−1)k−j mod n, it would also imply Ca2 ⊆ Ca1 ,
leading to conclude that a1 = a2 mod n, which is a contradiction of the initial assumption about
them being different.

Two notable theorems that make use of the cyclotomic coset definition to determine the minimal
polynomials of every element in a finite field can be stated as follows [44].

Theorem 1.1.1 Let α be a primitive element of Fqm , the minimal polynomial of αi in Fq[x] is

g(i)(x) =
∏
j∈Ci

(x− αj), where Ci is the unique cyclotomic coset of q mod qm − 1 containing i.

Theorem 1.1.2 Given a positive integer n and a prime power q, with gcd(n, q) = 1, let m be
a positive integer such that n | (qm − 1). Let α be a primitive element of Fqm and let g(i)(x) ∈
Fq[x] be the minimal polynomial of αi ∈ Fqm . Denoting as {a1, . . . , as} ⊆ Zn a complete set of

Page 12

LEDAcrypt

representatives of cyclotomic cosets of q mod n, the polynomial xn− 1 ∈ Fq[x] can be factorized as
the product of monic irreducible polynomials over Fq, i.e.,

xn − 1 =
s∏
i=1

g

(
(qm−1)ai

n

)
(x).

Corollary 1.1.1 Given a positive integer n and a prime power q, with gcd(n, q) = 1, the number
of monic irreducible factors of xn − 1 ∈ Fq[x] is equal to the number of cyclotomic cosets of q mod
n.

From the previous propositions on the properties of finite fields, it is possible to derive the following
results.

Corollary 1.1.2 Given an odd prime number p, if 2 is a primitive element in the finite field
Zp then the irreducible (non trivial) polynomials being a factor of xp + 1 ∈ F2[x] are x + 1 and
Φ(x) = xp−1 + xp−2 + · · ·+ x+ 1.

Proof. Considering the ring of polynomials with binary coefficients F2[x] and picking a positive
integer n as an odd prime number (i.e., n = p), Corollary 1.1.1 ensures that the number of factors
of xp + 1 ∈ F2[x] equals the number of cyclotomic cosets of 2 mod p.
If 2 is a primitive element of Zp, its order, ordp(2), is equal to the order of the (cyclic) multiplicative
group of the field, i.e., ordp(2) = | (Zp \ {0}, ·) | = p − 1; thus, the said cyclotomic cosets can be
listed as: C0 = {0 · 2j mod p : j = 0, 1, . . . } = {0} and C1 = {1 · 2j mod p : j = 0, 1, . . . } = Zp \ {0}.
The polynomial xp − 1 ∈ F2[x] admits α = 1 as a root, therefore its two (non trivial) factors can
be listed as: x+ 1 and xp+1

x+1 = xp−1 + xp−2 + · · ·+ x+ 1.

Theorem 1.1.3 (Invertible elements in F2[x]/〈xp + 1〉) Let p be a prime number such that
ordp(2) = p− 1. Let g(x) be a binary polynomial in F2[x]/〈xp + 1〉, with deg(g(x)) > 0.
g(x) has a multiplicative inverse in F2[x]/〈xp + 1〉 if and only if it contains an odd number of terms
and g(x) 6= Φ(x), with Φ(x) = xp−1 + xp−2+ · · ·+ x+ 1.

Proof. If g(x) ∈ F2[x]/〈xp + 1〉 contains an odd number of terms and g(x) 6= Φ(x), to prove it is
invertible modulo xp + 1 we need to consider that gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)).
It is easy to observe that x + 1 does not divide g(x), i.e., (x + 1) - g(x), as g(1) = 1, thus they
are coprime. Considering Φ(x), we know by hypothesis that ordp(2) = p − 1, therefore Φ(x) is
irreducible over F2[x] (see Corollary 1.1.2), which excludes that g(x) | Φ(x).
To the end of proving that g(x) and Φ(x) are coprime, it has to hold that Φ(x) - g(x). To this end
assume, by contradiction, that g(x)h(x) = Φ(x) for a proper choice of h(x) ∈ F2[x]. The previous
equality entails that deg(g(x)) + deg(h(x)) = p− 1, while deg(g(x)) ≤ p− 1, which in turn leaves
deg(h(x)) = 0 as the only option, leading to conclude h(x) = 0 or h(x) = 1. In case h(x) = 0,
the equality g(x) · 0 = xp−1 + xp−2 + · · · + x + 1 is false, while in case h(x) = 1, the equality
g(x) · 1 = Φ(x) contradicts the hypothesis. Since we proved that g(x) - Φ(x) and Φ(x) - g(x),
g(x) 6= Φ(x) by hypothesis, we can infer that they are coprime.
Finally, being gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)) = 1 we conclude that g(x) is invertible.

To prove the other implication of the theorem, if g(x) ∈ F2[x]/〈xp + 1〉, with deg(g(x)) > 0, is
invertible we need to derive that g(x) must have an odd number of terms and be different from
Φ(x). Being g(x) invertible, this means that gcd(g(x), xp + 1) = gcd(g(x), (x+ 1)Φ(x)) = 1, which
in turn means that gcd(g(x), x+ 1) = 1 and gcd(g(x),Φ(x)) = 1 that guarantees that g(x) 6= Φ(x)

Page 13

LEDAcrypt

and that g(1) = 1. Willing to prove that g(x) must have an odd number of terms, assume, by
contradiction, it has an even number of terms. Regardless of which terms are contained in g(x)
this means that it admits 1 as a root, which contradicts the premise.

Invertibility of square quasi cyclic binary matrices In the construction of the LEDAcrypt
primitives we will need to generate QC binary square matrices that must be invertible. To remove
the need to compute the matrix determinant, as it is computationally demanding, we prove and
employ the following theorem. We denote as perm (·) the permanent of a matrix, and as w (·) the
number of the nonzero coefficients of a polynomial, a quantity also known as its weight.

Theorem 1.1.4 Let p > 2 be a prime such that ordp(2) = p − 1 and Q is an n0 × n0 matrix of
elements of F2[x]/〈xp + 1〉; if perm (w(Q)) is odd and perm (w(Q)) < p, then Q is non-singular.

Proof. Since each block Qij is isomorphic to a polynomial qij(x) ∈ F2[x]/〈xp+1〉, the determinant
of the matrix Q is represented as an element of F2[x]/〈xp + 1〉 as well. Let us denote by d(x) the
polynomial associated to the determinant. If the inverse of d(x) exists, then Q is non-singular.
According to Theorem 1.1.3, showing that d(x) has odd weight and d(x) 6= Φ(x) = xp−1 + xp−2 +
· · · + 1 is enough to guarantee that it is invertible. In general, when we are considering two
polynomials a(x) and b(x), with w (a(x)) = wa and w (b(x)) = wb, the following statements hold:

i. w (a(x)b(x)) = wawb − 2c1, where c1 is the number of cancellations of pairs of monomials
with the same exponent resulting from multiplication;

ii. w (a(x) + b(x)) = wa + wb − 2c2, where c2 is the number of cancellations due to monomials
with the same exponent appearing in both polynomials.

The determinant d(x) is obtained through multiplications and sums of the elements qij(x) and, in
case of no cancellations, has weight equal to perm (w(Q)). If some cancellations occur, considering
statements i) and ii) above, we have that w (d(x)) = perm (w(Q))−2c, where c is the overall number
of cancellations. So, even when cancellations occur, d(x) has odd weight only if perm (w(Q)) is
odd. In addition, the condition perm (w(Q)) < p guarantees that d(x) 6= Φ(x), since w (Φ(x)) = p.

With this result, we can guarantee that a QC matrix is non-singular, provided that the weights of
its circulant blocks are chosen properly.

1.1.2 Quasi-cyclic low-density parity-check codes and their efficient decoding

Binary error correcting codes rely on a redundant representation of information in the form of
binary strings to be able to detect and correct accidental bit errors which may happen during
transmission or storage. We employ binary codes acting on a finite binary sequence at once, known
as the information word, which are known as block codes. We will refer to them simply as binary
codes in the following.

In this setting, let F2 be the binary finite field with the addition and multiplication operations
that correspond to the usual exclusive-or and logical product between two Boolean values. Let Fk2
denote the k-dimensional vector space defined on F2. A binary code, denoted as C (n, k), is defined

Page 14

LEDAcrypt

as a bijective map C (n, k) : Fk2 → Fn2 , n, k ∈ N, 0 < k < n, between any binary k-tuple (i.e., an
information word) and a binary n-tuple (denoted as codeword). The value n is known as the length
of the code, while k is denoted as its dimension.
Encoding through C (n, k) means converting an information word u ∈ Fk2 into its corresponding
codeword c ∈ Fn2 . Given a codeword ĉ corrupted by an error vector e ∈ Fn2 with Hamming weight
t > 0 (ĉ = c+ e), decoding instead recovers both the value of the information word u and the value
of the error vector e. A code is said to be t-error correcting if, for any value of e, given ĉ there is a
decoding procedure to retrieve both the error vector e and the original information word u.

Definition 1.1.2 (Linear Code) The code C (n, k) is linear if and only if the set of its 2k code-
words is a k-dimensional subspace of the vector space Fn2 .

A property of linear block codes that follows from Definition 1.1.2 is that the sum modulo 2, i.e.,
the component wise exclusive-or, of two codewords is also a codeword.

Definition 1.1.3 (Minimum distance) Given a linear binary code C (n, k), the minimum dis-
tance of C (n, k) is the minimum Hamming distance among all the ones which can be computed
between a pair of its codewords.

If the code is linear, its minimum distance coincides with the minimum Hamming weight of its
nonzero codewords.

Definition 1.1.4 (Encoding) Given C (n, k), a linear error correcting code, and Γ ⊂ Fn2 the vector
subspace containing its 2k codewords, it is possible to represent it choosing k linearly independent
codewords {g0, g1, . . . gk−1} ∈ Fn2 to form a basis of Γ. Any codeword c = [c0, c1, . . . , cn−1] can be
expressed as a linear combination of the vectors of the basis

c = u0g0 + u1g1 + . . .+ uk−1gk−1, (1.5)

where the binary coefficients ui can be thought as the elements of an information vector u =
[u0, u1, . . . , uk−1], which the code maps into c. We then say that u is encoded into c.

Equation (1.5) can be rewritten as c = uG, where G is a k×n binary matrix known as the generator
matrix of the code C (n, k), i.e.,

G =

g0

g1
...

gk−1

 .
Since any set of k linearly independent codewords can be used to form G, a code can be represented
by different generator matrices. Among the possible generator matrices for a linear code, one known
as systematic can always be derived.

Definition 1.1.5 (Systematic Encoding) A linear error correcting code C (n, k) is said to have
systematic encoding, or to be systematic in short, if each one of its codewords contains the infor-
mation vector it is associated to.

Page 15

LEDAcrypt

A conventional way to express a systematic code is the one where each n-bit codeword, c, is obtained
by appending r = n− k redundancy bits (ck, ck+1, . . . , cn−1) to its corresponding k-bit information
word (i.e., c0, c1, . . . , ck−1, with ci = ui, 0 ≤ i < k): c = [u0, u1, . . . , uk−1|ck, ck+1, . . . , cn−1]. It
follows that the associated k × n generator matrix G can be written as G = [Ik|P], where Ik
denotes the k × k identity matrix and P is a k × r binary matrix.
Let us consider the set of all n-bit vectors in Fn2 that are orthogonal to any codeword of the code
subspace Γ, known as its orthogonal complement Γ⊥. Its dimension is dim

(
Γ⊥
)

= n − dim (Γ) =
n− k = r. A basis of Γ⊥ is readily obtained choosing r linearly independent vector in Γ⊥ as

H =

h0

h1
...

hr−1

 .
The r×n matrix H is known as a parity-check matrix of the code C (n, k), while, for any n-bit vector
x ∈ Fn2 , the r × 1 vector s = HxT , where T denotes transposition, is known as the syndrome of x
through H. Given that H is a basis of Γ⊥, every codeword c ∈ Γ satisfies the equality HcT = 0r×1

where 0r×1 is the r × 1 zero vector, i.e., a codeword belonging to C(n, k) has a null syndrome
through H.

It is easy to show that the generator matrix G and the parity-check matrix H are two equivalent
descriptions of a linear code. Indeed, we have that HcT = HGTuT = 0r×1, ∀u ∈ Fk2, yielding in
turn that HGT = 0r×k. Exploiting the aforementioned relation, it is possible to derive H from G
and vice versa. Let us consider, for the sake of clarity, the case of a systematic code C(n, k) with
G = [Ik|P]. It is possible to obtain the corresponding parity-check matrix H as

[
P T |Ir

]
, which

satisfies HGT = P T + P T = 0r×k. Finally, considering a generic parity-check matrix H = [A|B],
with A an r × k matrix and B an r × r non-singular matrix, a systematic generator matrix of the

corresponding code is computed as G =
[
Ik|
(
B−1A

)T]
, being B−1 the inverse of matrix B.

A QC code is defined as a linear block code C(n, k) having information word size k = pk0 and
codeword size n = pn0, where n0 is denoted as basic block length of the code and each cyclic shift
of a codeword by n0 symbols results in another valid codeword [42].
LEDAcrypt hinges on a QC code C(pn0, pk0) having the generator and parity-check matrices com-
posed by p× p circulant sub-matrices (blocks).

A Low-Density Parity-Check (LDPC) code C (n, k) is a special type of linear block code charac-
terized by a sparse parity-check matrix H. In particular, the Hamming weight of a column of H,
denoted as dv, is much smaller than its length r and increases sub-linearly with it. In terms of error
correction capability, LDPC codes having a non-constant weight for either the rows or the columns
of H, hence known as irregular LDPC codes, were proven to approach the channel capacity [29].
Considering the parity-check matrix H of an LDPC code as the incidence matrix of a graph, such
a graph is known as Tanner graph, and it has been shown that keeping the number of short cycles
as small as possible in such a graph is beneficial to the error correction performance of the code.

The peculiar form of LDPC codes allows to devise an efficient decoding procedure, provided their
parity-check matrix H is known, via algorithms known as BF decoders [13]. Indeed, BF algorithms
perform decoding with a fixed-point procedure which exploits the form of H to iteratively deduce
which bits of an error-affected codeword should be flipped in order to obtain a zero-valued syndrome
for it. If the fixed-point procedure converges within a desired amount of iterations to a zero-valued
syndrome, the decoding action is deemed successful.

Page 16

LEDAcrypt

The rationale of BF decoders is in considering the parity-check matrix H as the description of a
set of r equations in the codeword bits yielding the syndrome bits as their results. Such equations
are known as parity-check equations, or parity checks, in short. In this context, the one-valued
coefficients of the i-th column of a parity matrix H can be thought of as the indicators of which
parity checks of the code are involving the i-th bit of the received codeword. The result of each
one of the said parity checks is a bit in the syndrome, hence a zero-valued syndrome indicates a
set of successful parity checks, and thus a correct codeword. The convergence of the fixed-point
decoder is influenced by the number of parity checks in which each codeword element is involved:
in particular, being involved in a small number of parity checks speeds up the convergence.

An LDPC code may also be a QC code, expressed with a QC parity-check or generator matrix,
hence being named a QC-LDPC code, which is indeed the case of the codes employed in LEDAcrypt.

An efficient BF decoding procedure for QC-LDPC codes can be devised relying on the number of
unsatisfied parity checks to which a codeword bit concurs as an estimate of it being affected by an
error. We describe such a procedure in Algorithm 1, where the sparse and QC nature of the matrix
H is explicitly exploited.

To this end H is represented as r0 × n0 sparse p× p circulant blocks, and only the positions of the
first column of each block are memorized in Hsparse. Algorithm 1 receives, alongside Hsparse,
the error-affected codeword to be corrected x, its syndrome computed as s = HxT , and performs
the fixed-point decoding procedure for a maximum of imax iterations. The algorithm outputs its
best estimate for the correct codeword c and a boolean variable decodeOk reporting the success of
the decoding procedure. The procedure iterates at fixed-point (loop at lines 4–18) the decoding
procedure, which starts by counting how many unsatisfied parity checks a codeword bit is involved
into (lines 5–10). Such a value is obtained considering which are the asserted bits in a given column
of H, taking care of accounting for its sparse representation, and the cyclic nature of its blocks
(line 8). Whenever a bit in the i-th column and assertedHbitPos-th row of H is set, it is pointing
to the fact that the i-th bit of the codeword is involved in the assertedHbitPos-th parity-check
equation. Thus, if the assertedHbitPos-th bit of the syndrome is unsatisfied, i.e., equal to 1, the
number of unsatisfied parity checks of the i-th bit is incremented (lines 9–10).

Once the computation of the number of unsatisfied parity checks per codeword bit is completed, a
decision must be taken on which of them are to be flipped, as they are deemed error affected. The
choice of the threshold that the number of unsatisfied parity checks should exceed, can be done a
priori from the code parameters, or determined taking into account the iteration reached by the
decoder and the current weight of the syndrome.

Thus, the procedure toggles the values of all the codeword bits for which the number of unsatisfied
parity checks matches the maximum one (lines 12–14). Once this step is completed, the values
of the parity checks should be recomputed according to the new value of the codeword. While
this can be accomplished by pre-multiplying the transposed codeword by H, it is more efficient to
exploit the knowledge of which bits of the codeword were toggled to change only the parity-check
values in the syndrome affected by such toggles. Lines 15–17 of Algorithm 1 update the syndrome
according to the aforementioned procedure, i.e., for a given i-th codeword bit being toggled, all
the syndrome values corresponding to the positions of the asserted coefficients in the i-th column
of H are also toggled. Once either the decoding procedure has reached its intended fixed-point,
i.e., the syndrome is a zero-filled vector, or the maximum number of iterations has been reached,
Algorithm 1 returns its best estimate for the corrected codeword, together with the outcome of the
decoding procedure (lines 19–21).

Page 17

LEDAcrypt

Algorithm 1: BF decoding

Input: x: QC-LDPC error-affected codeword as a 1× pn0 binary vector.
s: QC-LDPC syndrome. It is a pr0 × 1 binary vector obtained as s = HxT .

Hsparse: sparse version of the parity-check matrix H, represented as a
dv × n0 integer matrix containing for each of its n0 columns, the positions in
{0, 1, . . . , pr0 − 1} of the asserted binary coefficients in the first column of the
sequence of r0 circulant block matrices (any of which with size p× p).

Output: c: error-free 1× pn0 codeword
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding failure

1 codeword← x // bitvector with size pn0

2 syndrome← s // bitvector with size pr0

3 iter← 0 // scalar variable denoting the number of iterations

4 repeat
5 iter← iter + 1
6 unsatParityChecks← 01×pr0 // counters of unsatisfied parity checks

7 for i = 0 to n0 − 1 do
8 for exp = 0 to p− 1 do
9 for j = 0 to dv − 1 do

10 assertedHbitPosition←
(exp + Hsparse[j][i]) mod p+ p ·

⌊
Hsparse[j][i] div p

⌋
11 if syndrome[assertedHbitPosition] = 1 then
12 unsatParityChecks[ip+ exp]← 1 + unsatParityChecks[ip+ exp]

13 threshold← ThresholdChoice(iterationCounter, syndrome)

14 for i = 0 to pn0 − 1 do
15 if unsatParityChecks[i] ≥ threshold then
16 BitToggle(codeword[i]) // codeword update

17 for j = 0 to dv − 1 do

18 assertedHbitPos← (exp + Hsparse[j][i]) mod p+ p ·
⌊
Hsparse[j][i] div p

⌋
19 BitToggle(syndrome[assertedHbitPos])

20 until syndrome 6= 01×pr0 and iter < imax

21 if syndrome = 01×pr0 then
22 return codeword, true
23 return codeword, false

1.1.3 Classic code-based cryptosystems

The McEliece cryptosystem is a public-key encryption (PKE) scheme proposed by Robert McEliece
in 1978 [31] and exploiting the hardness of the problem of decoding a random-like linear block code.
In the original proposal, the McEliece cryptosystem used irreducible Goppa codes as secret codes,
but its construction can be generalized to other families of codes. The triple of polynomial-time
algorithms ΠMcE=(KeygenMcE, EncMcE, DecMcE) defining the scheme are as follows:

Page 18

LEDAcrypt

• The key-generation algorithm considers a binary linear block code C(n, k), with codeword
length n, information word length k and outputs a secret key skMcE defined as the generator
matrix Gk×n of a code C(n, k) able to correct t ≥ 1 or less bit errors, plus a randomly chosen
invertible binary matrix Sk×k, named scrambling matrix, and a binary permutation matrix
Pn×n:

skMcE ← {S,G, P} (1.6)

The corresponding public key pkMcE is computed as the generator matrixG′k×n of a permutation-
equivalent code with the same size and correction capability of the original code:

pkMcE ← {G′}, with G′ = SGP (1.7)

• The encryption algorithm takes as input a public key pkMcE and a message composed as a
1× k binary vector u, and outputs a ciphertext x← EncMcE

(
pkMcE, u

)
computed as:

x = uG′ + e, (1.8)

where e is a 1×n random binary error vector with weight t (i.e., with exactly t asserted bits).

• The decryption algorithm takes as input a secret key skMcE and a ciphertext x1×n and outputs
a message m′ ← DecMcE

(
skMcE, x

)
computed as the result of a known error correction decoding

algorithm (Decode) able to remove t errors present in xP−1 and subsequently multiplying by
the inverse of the matrix S:

x′ = Decode(xP−1)S−1 = Decode
(
(uS)G+ (eP−1)

)
S−1 = (uS)S−1 = u (1.9)

In the original McEliece cryptosystem algebraic code families (namely, Goppa codes) pro-
vided with bounded-distance decoders were used. In such a case, since the number of errors
correctable by the secret code is t, the correction of the error vector eP−1 is ensured by design
and the cryptosystem exhibits a zero DFR.

It is also worth noticing that the original McEliece cryptosystem only provides One Wayness
against Chosen Plaintext Attack (OW-CPA) guarantees, which means that given a ciphertext
it is computationally impossible to recover the plaintext without knowing the private key.
Suitable conversions of the cryptosystem must be exploited in order to achieve IND-CCA2,
which means that an adversary with access to a decryption oracle (that knows the private
key) cannot distinguish whether a string is a decryption of a legitimate given ciphertext or
a random valid plaintext message. The decryption oracle cannot be queried on the given
ciphertext. When these conversions are used, some constraints on the public code can be
relaxed.

The Niederreiter cryptosystem [34] is a code-based cryptosystem exploiting the same trapdoor in-
troduced in the McEliece PKE [31] with an alternative formulation. The Niederreiter PKE employs
syndromes and parity-check matrices in place of the codewords and generator matrices employed
by the algorithms in the McEliece PKE. The first proposal of such a scheme employed Generalized
Reed-Solomon (GRS) codes that were proven to make the whole construction vulnerable. However,
when the same family of codes is used, Niederreiter and McEliece cryptosystems exhibit the same
cryptographic guarantees [28]. The triplet of polynomial-time algorithms ΠNie=(KeygenNie, EncNie,
DecNie) defining the scheme are as follows:

Page 19

LEDAcrypt

• The key-generation algorithm considers a binary linear block code C(n, k), with codeword
length n, information word length k and outputs a secret key skNie defined as the parity-
check matrix Hr×n of a code C(n, k), r = n− k able to correct t ≥ 1 or less bit errors, plus a
randomly chosen invertible binary matrix Sr×r, named scrambling matrix:

skNie ← {H,S} (1.10)

The corresponding public key pkNie is computed as the parity-check matrix H ′r×n obtained
as the product of the two secret matrices and is equivalent to H:

pkNie ← {H ′}, with H ′ = SH (1.11)

Note that the knowledge of H ′ is not amenable to be employed with an efficient decoding
algorithm as it actually hides the structure of the selected code.

• The encryption algorithm takes as input a public key pkNie and a message composed as a 1×n
binary vector e with exactly t asserted bits, and outputs a ciphertext xr×1 ← EncNie

(
pkNie, e

)
computed as the syndrome of the original message:

x = H ′eT = SHeT (1.12)

• The decryption algorithm takes as input a secret key skNie and a ciphertext xr×1 and out-
puts a message e1×n ← DecNie

(
skNie, x

)
computed as the result of a known error correction

syndrome decoding algorithm (SynDecoding) applied to the vector S−1x and able to recover
the original error vector e1×n (as well as the zero codeword 01×n):

e = SynDecoding(S−1x) = SynDecoding(HeT) (1.13)

In the original Niederreiter cryptosystem algebraic code families provided with bounded-
distance decoders were considered. In such a case, the syndrome decoding algorithm allows
to deterministically recover the original error vector with weight t and the cryptosystem
exhibits a zero DFR.

1.2 QC-LDPC code-based McEliece and Niederreiter cryptosys-
tems

In the following we describe the algorithms of both McEliece ΠMcE=(KeygenMcE, EncMcE, DecMcE) and
Niederreiter ΠNie=(KeygenNie, EncNie, DecNie) cryptosystems instantiated with QC-LDPC codes.

• The key-generation algorithms KeygenNie in Fig. 1.1(a) and KeygenMcE in Fig. 1.1(b) con-
sider a QC-LDPC code C(n, k), with codeword length n = pn0, information word length
k = p(n0 − 1), where n0 ∈ {2, 3, 4}, p is a prime number such that ordp(2) = p− 1.

The first step in the key generation procedures is to find two random binary matrices that
correspond to the (secret) quasi-cyclic p × pn0 parity-check matrix H of a QC-LDPC code
with the mentioned parameters and a pn0 × pn0 quasi-cyclic sparse binary matrix Q. The
matrix H is structured as 1×n0 circulant blocks, each of which with size p×p and with a fixed

Page 20

LEDAcrypt

Algorithm 2: KeygenNie

Output: (skNie, pkNie)
Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2

1 seed← TRNG()

2 {H,Q} ← GenerateHQ(seed)
// H = [H0, . . . ,Hn0−1],
// Hi is a p× p circulant block

// with w(Hi) = dv, 0 ≤ i < n0

// Q is a n0 × n0 block matrix

// in accordance to Th. 1.1.4

// w([Qi,0, . . . , Qi,n0−1])=m,0≤i<n0

3 L← HQ
// L = [L0, L1, . . . , Ln0−1],
// Lj =

∑
iHiQij is a p× p

circulant block

4 if ∃ 0≤j<n0 s.t. w(Lj) 6= dv ×m then
5 goto 2
6 LInv← ComputeInverse(Ln0−1)
7 for i = 0 to n0 − 2 do
8 Mi ← LInvLi

// Mi is a p× p circulant block

9 pkNie ← [M0 | . . . |Mn0−2|I]
10 skNie ← {H,Q}

// I is a p× p identity block

11 return (skNie, pkNie)

(a)

Algorithm 3: KeygenMcE

Output: (skMcE, pkMcE)
Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2

1 seed← TRNG()

2 {H,Q} ← GenerateHQ(seed)
// H = [H0, . . . ,Hn0−1],
// Hi is a p× p circulant block

// with w(Hi) = dv, 0 ≤ i < n0

// Q is a n0 × n0 block matrix

// in accordance to Th. 1.1.4

// w([Qi,0, . . . , Qi,n0−1])=m,0≤i<n0

3 L← HQ
// L = [L0, L1, . . . , Ln0−1],
// Lj =

∑
iHiQij is a p× p

circulant block

4 if ∃ 0≤j<n0 s.t. w(Lj) 6= dv ×m then
5 goto 2
6 LInv← ComputeInverse(Ln0−1)
7 for i = 0 to n0 − 2 do
8 Mi ← LInvLi

// Mi is a p× p circulant block

9 Z ← diag([I, . . . , I])
// p(n0−1)×p(n0−1) identity

// matrix, composed as a diagonal

// block matrix with (n0 − 1)
// replicas of I, where I is

// a p× p identity matrix

10 pkMcE←
[
Z | [M0 | . . . |Mn0−2]T

]
11 skMcE ← {H,Q}
12 return (skMcE, pkMcE)

(b)

Figure 1.1: Summary of the key generation algorithms of both Niederreiter (a) and McEliece (b)
cryptoschemes, instantiated with QC-LDPC codes

odd number of asserted elements per row/column, denoted as dv (to guarantee invertibility
of each block – see Th. 1.1.3):

H = [H0, H1, . . . ,Hn0−1], w(Hi) = dv, 0 ≤ i < n0.

The matrix Q is structured as a n0 × n0 block matrix, where each block is a p × p binary
circulant matrix (note that the existence of a multiplicative inverse of any of these blocks is
not guaranteed). The weights of each block of Q define a circulant matrix of integers denoted

Page 21

LEDAcrypt

as w(Q) such that the sum of all elements in any row/column of Q amounts to the same value
m =

∑n0−1
i=0 mi.

Q =

Q0,0 Q0,1 . . . Q0,n0−1

Q1,0 Q1,1 . . . Q1,n0−1
...

...
. . .

...
Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 w(Q) =

m0 m1 . . . mn0−1

mn0−1 m0 . . . mn0−2
...

...
. . .

...
m1 mn0−1 . . . m0

 .
The choice of the weights m0,m1, · · · ,mn0−1 is constrained according to Theorem 1.1.4 to
ensure the invertibility of Q, even if any individual block may not be invertible.

In computing the product HQ (see line 3 of both Fig. 1.1(a) and Fig. 1.1(b)), the mul-
tiplication of H by the (compatible) full-rank matrix Q (rank(Q) = pn0) yields a matrix
L = HQ with the same rank of H, thus rank(L) = p. This implies that every p× p block of
L = [L0, L1, . . . , Ln0−1] has the same rank (i.e., rank(Li) = p) and is therefore invertible. As
a consequence in line 6 of both Fig. 1.1(a) and Fig. 1.1(b), there is no need to check whether
Ln0−1 admits a multiplicative inverse or not.

It is worth noting that the necessary and sufficient conditions in Th. 1.1.3 state that an
invertible binary circulant block matrix must exhibit a weight of any row/column equal to

an odd number. Since Lj =

n0−1∑
i=0

HiQij , the weight of Lj satisfies also the following w(Lj) =

dv ×m − 2c, where the parameter c ≥ 0 is justified with an argument analogous to the one
reported in the proof of Th. 1.1.4. From this, it is easy to conclude that m =

∑n0−1
i=0 mi must

also be an odd number.

Lines 4–5 in both Fig. 1.1(a) and Fig. 1.1(b) check that all the blocks of the matrix L have a
weight equal to dv×m, and repeat the generation process until this condition does hold. Such
a constraint is imposed as the weight of the blocks of L is a security parameter in LEDAcrypt,
and then must be appropriately constrained. Considerations on the probability of drawing
instances of the matrices H and Q that match the said criterion are made in Section A.

Starting from the multiplicative inverse of Ln0−1, the following matrix can be computed

M = L−1
n0−1L = [M0|M1|M2| . . . |Mn0−2|Ip] = [Ml|I] (1.14)

where I denotes the p×p identity matrix. The matrix M in (1.14) is the parity-check matrix of
the public code in systematic form, and can easily be converted into the systematic generator
matrix of the same code.

The private key for each of the schemes at hand consists of the two matrices H and Q:
skNie ← {H,Q}, skMcE ← {H,Q}. The computation of the public key depends on whether the
scheme is Niederreiter-based or McEliece-based. Specifically, the computation of the public
key values will yield either a parity-check matrix or a generator matrix, both in systematic
form, referring to a public code without a computationally efficient decoding/decryption
algorithm (see lines 7–9 in both Fig. 1.1(a) and Fig. 1.1(b)).

It is worth noting that in practice there is no need to store a public key including circulant
matrices (blocks) that equal to an identity p× p matrix. Moreover, since both H and Q are
formed by sparse circulant matrices (blocks), it is convenient to store each block as the set
of integers representing the positions of non-zero elements of the first row of each block. The
said set of integers requires at least dlog2(p)e bits to be stored.

Page 22

LEDAcrypt

Algorithm 4: EncryptNie

Input: e = [e0, . . . , en0−1]: plaintext
message; randomly chosen
1× pn0 binary vector, with t
asserted bits, where each ej is a
1×p vector with 0≤j<n0.
pkNie = [M0 | . . . |Mn0−2|I]
public key: sequence of n0−1
p×p circulant blocks Mj , with
0≤j<n0−1, followed by an
identity block

Output: s: syndrome; p× 1 binary
vector

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2

1 s← 0p×1 // zero vector

2 for j = 0 to n0 − 1 do
3 s← s+Mj e

T
j

4 s← s+ eTn0−1

5 return s

(a)

Algorithm 5: EncryptMcE

Input: u = [u0, . . . , un0−2]: plaintext
message; n0 1× p binary vectors;
e = [e0, . . . , en0−1]: error message
with wt(e)=t; composed as n0

1× p binary vectors;
pkMcE=[Z | [M0 |. . .|Mn0−2]T]]:
public key; composed as sequence
of n0−1 p×p circulant blocks Mj ,
with 0≤j<n0−1 juxtaposed to
compose a systematic (n0−1)×n0

generation matrix with p×p
circulant blocks. Z: a diagonal
block matrix with n0−1 replicas
of the identity circular block I

Output: c = [c0, . . . , cn0−1]: error
affected codeword; 1× pn0

binary vector, where each cj is
a 1×p vector with 0≤j<n0.

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2

1 blk← 0 // p× p zero block

2 for j = 0 to n0 − 2 do
3 blk← blk + uTj Mj

4 c← [u0, u1, . . . , un0−2, blk]
5 for j = 0 to n0 − 1 do
6 cj ← cj + ej

7 return c

(b)

Figure 1.2: Encryption algorithm of Niederreiter (a) and McEliece (b) cryptoschemes, instantiated
with QC-LDPC codes

If we consider that the circulant blocks in any block row ofQ have overall weightm=
∑n0−1

i=0 mi,
the size of skNie (equiv., skMcE) is |skNie|=n0 (dv +m) dlog2(p)e bits.

We note that, given the fast generation procedure for H and Q, a viable option to reduce
the size of the private key at rest is to store the seed of a cryptographically secure Pseudo
Random Number Generator (PRNG) from which H and Q are generated. To this end, we
chose the NIST standard PRNG CTR-DRBG, instantiated with AES-256 as its core block
cipher.

• The encryption algorithm EncryptNie in Fig. 1.2(a) takes as input a public key pkNie =
[M0 | . . .Mj | . . . | Mn0−2|I] and a message composed as a randomly chosen 1 × pn0 binary
vector e with exactly t asserted bits, and outputs a ciphertext that is the p× 1 syndrome of
the message computed multiplying sequence of n0 message blocks of size 1 × p by the QC

Page 23

LEDAcrypt

parity-check matrix of the public code included in the public key:

s = [M0 | . . .Mj | . . . |Mn0−2|I]eT .

The encryption algorithm EncryptMcE in Fig. 1.2(b) takes three input parameters: a plaintext
message composed as a 1× p(n0 − 1) binary vector u, an error vector composed as a 1× pn0

binary vector e with exactly t asserted bits (supposed to be uniformly and randomly picked
from the set of binary vectors with the same weight), and a public key pkMcE structured as a
QC generator matrix with size (n0 − 1)×n0, i.e., pkMcE =

[
Z | [M0 | . . . |Mn0−2]T

]
, where

Z = diag(I, . . . , I) is a diagonal block matrix composed as n0 − 1 replicas of the identity
circulant block I (i.e., a p× p identity matrix), which coincides with an (n0− 1)p× (n0− 1)p
identity matrix. The algorithm outputs a ciphertext c that is an error affected 1 × pn0

binary vector composed as follows. The sequence of the first (n0−1) binary vectors from the
plaintext message (each with size 1× p) followed by the binary vector obtained as the sum of
products between the corresponding 1× p blocks in u and the ones in the public key portion
[M0 | . . . |Mn0−2], is added to the sequence of n0 binary vectors of the error vector e:

c = [e0| . . . |en0−2|en0−1] +

u0 | . . . | un0−2 |
n0−2∑
j=0

ujMj

 .
• The decryption algorithm DecryptNie in Fig. 1.3(a) takes as input a secret key skNie =
{H,Q} and a ciphertext that is identified with a p× 1 binary syndrome that is supposed to
be computed as s = [M0 | . . . |Mn0−2|I]eT =

(
L−1
n0−1[L0, . . . , Ln0−1]

)
eT . The outcome of the

decryption algorithm is the original binary vector e.

The initial steps of the algorithm (lines 1-2) consist in taking the secret matrices, re-computing
L = HQ and executing the multiplication between the received syndrome s and the last block
of L = [L0, . . . , Ln0−1] to obtain a new p×1 binary vector s′ = Ln0−1s = HQeT = H

(
QeT

)
=

H
(
eQT

)T
.

Defining the expanded error vector as e′ = eQT , the binary vector s′ can be thought of as
s′ = He′T to the end of applying a QC-LDPC decoding procedure and recover both e′ and
the original error vector e = e′

(
QT
)−1

.
QC-LDPC decoders are not bounded distance decoders, and some non-zero DFR must be
tolerated. The system parameters can be chosen such that the DFR is acceptably small; for
this purpose, the average decoding radius of the private code must be sufficiently larger than
the Hamming weight of e′, which is t′ ≤ mt and approximately equal to mt, due to the sparsity
of Q and e. As shown in line 3 of algorithm DecryptNie in Fig. 1.3(a), by exploiting the
efficient decoding algorithm described in Section 1.5 (named Qdecoder) the computation of(
QT
)−1

and the subsequent vector-matrix multiplication can be avoided altogether. In fact,
the Qdecoder described in Section 1.5 allows e to be recovered directly from the syndrome
s, taking into account the effects of both H and Q separately. If the decoding procedure
terminates successfully, the procedure returns also a Boolean variable res = true along with
the recovered original message e (see line 6 of algorithm DecryptNie in Fig. 1.3(a)). On
the other hand, when the decoding fails, the decryption algorithm returns the value of the
Boolean variable res set to false and a null value for the original message e = ⊥ (lines 4–5).

The decryption algorithm DecryptMcE in Fig. 1.3(b), takes as input a secret key skMcE =
{H,Q} and a ciphertext that is identified with an error affected codeword c = [c0, . . . , cn0−1]

Page 24

LEDAcrypt

Algorithm 6: DecryptNie

Input: s: syndrome; 1× p binary vector.
skNie = {H,Q} private key;

Output: e = [e0, . . . , en0−1]: error;
sequence of n0 binary vectors
with size 1× p.
res: Boolean value denoting if
the decryption ended
successfully (true) or not
(false)

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2

1 L← HQ // L = [L0| . . . |Ln0−1]
2 s′ ← Ln0−1s // s′ = HQeT

3 {e, res} ← Qdecoder(s′, skNie)
4 if res = false then
5 e← ⊥
6 return (e, res)

(a)

Algorithm 7: DecryptMcE

Input: c = [c0, . . . , cn0−1]: error affected
codeword; 1× pn0 binary vector,
where each cj is a 1× p vector
with 0 ≤ j < n0;
skMcE = {H,Q} private key;

Output: u = [u0, . . . , un0−2]: message;
sequence of n0−1 binary
vectors with size 1× p.
e = [e0, . . . , en0−1]: error;
sequence of n0 binary vectors
with size 1× p.
res: Boolean value denoting if
the decryption ended
successfully (true) or not
(false).

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2

1 L← HQ // L = [L0| . . . |Ln0−1]
2 s← LcT // p× 1 binary syndrome

3 {e, res} ← Qdecoder(s, skMcE)
4 if res = true then
5 for j = 0 to n0 − 1 do
6 uj ← cj + ej
7 else
8 e← ⊥; u← ⊥
9 return (u, e, res)

(b)

Figure 1.3: Decryption algorithm of Niederreiter (a) and McEliece (b) cryptosystems, instantiated
with QC-LDPC codes

that was computed as the element-wise addition between a 1×pn0 error vector with exactly t
asserted bits and a 1×pn0 binary vector [u0, . . . , un0−2, blk], where blk =

∑n0−2
j=0 uj(Ln0−1HQ).

The outcomes of the decryption algorithm are the original error vector e and message u.

The initial steps of the algorithm (lines 1-2) consist in taking the secret matrices, re-computing
L = HQ and executing the multiplication between the parity-check matrix L and the received
error-affected codeword c to obtain a syndrome s as p× 1 binary vector s = LcT .

On line 3 the efficient decoding algorithm described in Section 1.5 (named Qdecoder) is
employed to recover the original error vector e. If the decoding phase is successful (i.e.,
res = true), the original message is computed by adding element-wise the first n0−1 binary
blocks of the error affected codeword (i.e., the ciphertext) and of the recovered error vector
(see lines 6–7 of algorithm DecryptMcE in Fig. 1.3(b)); otherwise, the variable res is set to
false, while the message and error vectors are set to null values, u=⊥, e=⊥ (see lines 8–9).

Page 25

LEDAcrypt

Algorithm 8: LEDAcrypt-KEM Encap

Input: pkNie: public key.
Output: c: encapsulated ephemeral key;

K: ephemeral key.

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2;
EncryptNie(e, pkNie): encryption
function of the Niederreiter PKE;
E : set of all possible binary error
vectors e=[e0| . . . |en0−1], wt(e)=t

1 e
$← E // uniform random picking

2 c← EncryptNie(e, pkNie)
3 K ← Hash(e)

4 return (c,K)

(a)

Algorithm 9: LEDAcrypt-KEM Decaps

Input: skNie: secret key
k: a secret random bitstring;
c: encapsulated key.

Output: K: decapsulated key.

Data: p>2 prime, ordp(2)=p−1, n0 ≥ 2;
DecryptNie(c, skNie): decryption
function returning res = false on
an incorrect decoding, true and the
original message e, otherwise.

1 {e, res} ← DecryptNie(c, skNie)
2 if res = true and wt(e) = t then
3 return Hash(e)
4 else
5 return Hash(c|k)

(b)

Figure 1.4: Description of the key encapsulation and decapsulation primitives of LEDAcrypt KEM

1.3 Description of LEDAcrypt KEM

In this section we describe the structure of the Key Encapsulation Method of LEDAcrypt, that is,
LEDAcrypt KEM.

We employ the Niederreiter cryptosysems with OW-CPA described in the previous section together
with an apt conversion to obtain a KEM with a twofold goal: provide a fast KEM with IND-CPA
and ephemeral keys for low latency session establishment with perfect forward secrecy and a KEM
with IND-CCA2 and long term keys for scenarios where key reuse may be desirable. We achieve this
goal employing the same IND-CCA2 conversion applied to the QC-LDPC Niederreiter cryptosystem
for both scenarios and achieving an appropriate DFR through code parameter tuning and, where
needed, an additional IND-CCA2 redundant encryption technique.

In particular, we employ the U�⊥
m construction defined in [19], which starts from a deterministic

cryptosystem to build a KEM with IND-CCA2 in the Random Oracle Model (ROM) with a tight
reduction.

The same construction was proven to achieve IND-CCA2 in the Quantum Random Oracle Model
(QROM) in [20], with a tighter security reduction being reported in [21], starting from the as-
sumption that the underlying deterministic cryptosystem exhibits OW-CPA, as it is the case with
our Niederreiter PKC. The proofs in [19–21] take into account the possibility that the underlying
cryptoscheme is characterized by a bounded correctness error δ. The instantiation of the U�⊥

m con-
struction employing the QC-LDPC code-based Niederreiter cryptoscheme and a cryptographically
secure hash, Hash(·), is reported in Fig. 1.4. We chose, as the cryptographically secure hash to
instantiate the U�⊥

m construction, the NIST standard SHA-3 hash function.

Page 26

LEDAcrypt

As shown in algorithm LEDAcrypt-KEM Encap in Fig. 1.4(a), the encryption function of a Nieder-
reiter cryptoscheme encapsulates (line 2) a random error vector with exactly t asserted bits (line
1) and derives the encapsulated key K as the hash of the error vector itself (line 3). The de-
capsulation procedure, shown in algorithm LEDAcrypt-KEM Decaps in Fig. 1.4(b), attempts to
recover the error vector through an efficient syndrome decoding procedure employing the private
key skNie = {H,Q}.

The U�⊥
m construction as reported in [19–21] tests if the recovered error vector e is effectively

the correct Niederreiter plaintext by re-encrypting it with the public key. In our instantiation of
this construction it is possible to ascertain whether the outcome of a successful execution of the
decryption function e is the correct plaintext via testing that its weight is exactly t (see line 2
in Fig. 1.4(b)). Such a test is justified by the fact that a unique syndrome exists for each error
vector within the decoding radius of a QC-LDPC code. Such an observation saves us the cost of
re-encrypting e.

In case of a decoding failure [19–21], the decapsulation procedure computes the returned outcome
by hashing a secret value and the ciphertext (line 5). This prevents an adversary from distinguishing
when a failure occurs due to malformed plaintext messages, i.e., messages with a number of asserted
bits that is not exactly equal to t, from when a failure occurs due to the intrinsic behavior of the
underlying QC-LDPC code. In other terms, the adversary cannot draw any conclusion about the
decoding abilities of the code at hand when he/she is in control of composing messages that are
not in the legitimate message space.

To provide IND-CCA2 for a given security level 2λ, the authors of [19] state that it is required
for the decryption function to have a correctness error δ ≤ 2−λ. Given our goal of having both
a fast and compact KEM with ephemeral keys and IND-CPA guarantees, as well as a KEM with
IND-CCA2, we will provide different sets of parameters to be employed in the LEDAcrypt KEM
construction, which are characterized by a DFR low enough to foil statistical attacks and achieve
IND-CCA2 guarantees, while at the same time not hindering practical deployment.

1.4 Description of LEDAcrypt PKC

In this section we describe a construction to instantiate the LEDAcrypt PKC cryptoscheme pro-
viding a PKC with IND-CCA2 guarantees. While it is possible to employ LEDAcrypt KEM in
a Key Encapsulation Module + Data Encapsulation Mechanism (KEM+DEM) combination with
a symmetric encryption primitive, we note that such an approach may lead to a non-negligible
ciphertext expansion in case plaintexts are small in size.

We provide a construction which starts from the QC-LDPC code-based McEliece cryptosystem
described in the previous section, and derives a PKC exploiting the available capacity of the Public-
Key Encryption (PKE) primitive to store the actual message content. It is worth noting that
the systematic form of the generator matrix of the public code included in the public key pkMcE

would easily allow any observer to recover the information word u embedded in an encrypted
message c, without recovering the private key of the cipher (i.e., skMcE = {H,Q}). Nevertheless,
the conversion proposed by Kobara and Imai in [25], with the purpose of maximizing the amount
of message encrypted by a McEliece PKC, allows IND-CCA2 guarantees to be provided in the
ROM. Therefore, the confidentiality of the information word as well as the security of the private
key remain guaranteed by the hardness of the NP-hard general decoding problem even when a

Page 27

LEDAcrypt

systematic generator matrix is employed as public key.

In the following, we describe the basic encryption and decryption transformations and, subsequently,
the mechanisms of the γ-conversion scheme [25] that allow us to obtain a IND-CCA2 version of
LEDAcrypt PKC. As the Kobara-Imai (KI) γ-conversion is based on bit-wise manipulations, to
provide a clear and detailed description of them we introduce some specific naming conventions.
Bit-string values will be reported with a teletype font name (e.g., the plaintext to be encrypted
will be denoted as ptx, and the resulting ciphertext will be denoted as ctx) while, the length of a
bit-string, s, will also be expressed in bits and denoted as ls.

1.4.1 Encryption and decryption transformations for IND-CCA2

The main intuition of the KI conversion relies on xor-combining a padded plaintext message with
the output of a Deterministic Random Bit Generator (DRBG), seeded with the random bit-string
extracted from a True Random Number Generator (TRNG).
To this end, we chose the NIST standard PRNG CTR-DRBG, instantiated with AES-256 as its
core block cipher. Specifically, the original plaintext message (with size lptx bits) is prefixed with a
constant bit-string, with lconst bits, and a bit-string named lenField, with llenField bits, contain-
ing the value of lptx. This message is then concatenated with a sequence of zero or more null bits
to align the overall length of such an extended plaintext to a byte-multiple for implementation con-

venience (i.e., lextendedPtx = 8 ·
⌈
lconst+llenField+lptx

8

⌉
). The extended plaintext is then xor-combined

with the output of a DRBG to allow the resulting obfuscated plaintext to be safely enciphered. This
ensures the ciphertext to appear perfectly random.

In order for the IND-CCA2 property to hold, a fresh random value (i.e., a seed), encoded with lseed
bits, should be available from a TRNG for each message encryption. To be able to successfully
decrypt the plaintext, the seed of the DRBG is also enciphered alongside the message. The secret
seed is xor-combined with the digest computed by a hash function fed with the obfuscated plaintext.
The correctness of the resulting obfuscated seed is guaranteed by concatenating to the original seed
value enough zero bits to match the length of the hash digest in case lseed < lhash, thus obtaining
lobfuscatedSeed = lhash.

The extended plaintext bits are subsequently split into two bit-strings, namely iword and leftOver.
The former, having size of liword bits, is employed as the information word u to be encoded by the
QC-LDPC code underlying the processing performed by the McEliece encryption function (i.e.,
liword = p(n0− 1)), while the latter (with size lleftOver bits) is concatenated with the output of the
McEliece encryption function to yield the final ciphertext (ctx) of the KI-γ construction.

The obfuscated secret seed bits are employed as input to the constant-weight encoding function to
obtain a binary error vector e, with exactly t asserted bits, which is in turn fed into the McEliece
encryption function to complete a proper initialization of the encryption process. In case the
number of bits of the obfuscated seed (i.e., lobfuscatedSeed = lhash) are less than the ones required
by the constant-weight encoding procedure, random bits are extracted from the DRBG (or from a
new random source) to match the requirements.
Currently, the most efficient definition of a constant-weight function (in terms of execution time –
see next subsection) may fail to yield an output bit-string with exactly t asserted bits. Thus, the
computation of the constant-weight function is repeated until the value of a proper error vector is
returned.

Page 28

LEDAcrypt

Algorithm 10: LEDAcrypt PKC encryption transformation

Data: n, k, t: QC-LDPC code parameters. n = pn0 codeword size, k = p(n0 − 1)
information word size, t error correction capability, n0 basic block length of the code,
p circulant block size.
Hash: hash function with digest length in bits lhash

lobfuscatedPtx = max
(
p(n0 − 1),

⌈
lconst+lptx

8

⌉
· 8
)

lconst = lseed
liword = p(n0 − 1)
leword = lhash

Input: ptx: plaintext bit-string, with lptx ≥ 0
pkMcE: QC-LDPC based McEliece public key

Output: ctx ciphertext bit-string

1 seed← TRNG() // bit-string with length lseed
2 pad← DRBG(seed) // bit-string with length lobfuscatedPtx
3 obfuscatedPtx← ZeroPadByteAligned(const||lenField||ptx)⊕ pad

4 obfuscatedSeed← ZeroExtendByteAligned(seed, lhash)⊕Hash(obfuscatedPtx)
5 {iword, leftOver} ← Split(obfuscatedPtx, liword, lobfuscatedPtx − liword)
6 u← ToVector(iword) // 1× p(n0 − 1) information word vector

7 repeat
8 {e, encodingOk} ← ConstantWeightEncoder(obfuscatedSeed)
9 until encodingOk = true

10 c← EncryptMcE(u, e, pkMcE) // 1× pn0 codeword

11 ctx← ToBitString(c)||leftover // bit-string with lctx = pn0

12 return ctx

Figure 1.5: Description of the KI-γ encryption function adopted to define the encryption primitive
of LEDAcrypt PKC

The final ciphertext is composed by a bit-string made of the binary elements of the codeword
computed by the McEliece encryption function, concatenated with the leftOver bit-string.
In case the bit-length of leftOver is not a multiple of 8, leftOver is prefixed with a zero pad up
to the nearest byte for the sake of implementation ease and efficiency.
It is worth noting that the KI-γ construction allows a plaintext message of arbitrary length to be
encrypted. Employing the LEDAcrypt PKC construction, plaintext messages longer than p(n0 −
1)− lconst − llenField have a fixed ciphertext expansion of p+ lconst + llenField.
In contrast a LEDAcrypt KEM+DEM approach requires a fixed ciphertext expansion of pn0 bits.

A pseudo-code description of the KI-γ encryption algorithm is shown as Algorithm 10 in Fig. 1.5.
The described procedure employs the QC-LDPC code parameters of choice (i.e., the ones of
C(pn0, p(n0 − 1)) that allows up to t bit errors to be corrected), and a hash function, Hash(),
having a digest with a byte-aligned bit-length lhash as configuration parameters. We chose as our
hash function to instantiate the construction the NIST Standard SHA-3 hash function.

Algorithm 11 in Fig. 1.6 reports the pseudocode of the LEDAcrypt PKC decryption procedure. The

Page 29

LEDAcrypt

Algorithm 11: LEDAcrypt PKC decryption transformation

Data: n, k, t: QC-LDPC code parameters. n = pn0 codeword size, k = p(n0 − 1)
information word size, t error correction capability, n0 basic block length of the code,
p circulant block size.
const = 0lseed

Hash: hash function with digest length in bits lhash

Input: ctx: ciphertext bit-string.
skMcE: LEDAcrypt PKC private key.

Output: ptx plaintext bit-string

1 cword, leftOver← Split(ctx, pn0, lctx − pn0)
2 c← ToVector(cword)
3 {u, e, res} ← DecryptMcE(c, skMcE)
4 if res = true and wt(e) = t then
5 iword← ToBitString(u)
6 obfuscatedSeed← ConstantWeightDecode(e)
7 seed← ZeroTrim(obfuscatedSeed⊕Hash(iword||leftOver), lseed)
8 pad← DRBG(seed)
9 extendedPtx← obfuscatedPtx⊕ pad // extendedPtx should equal const||lenField||ptx

10 {retrievedConst, ptx} ← ZeroTrimAndSplit(extendedPtx, lconst, llenField)
11 if retrievedConst = const then
12 return ptx

13 return ⊥

Figure 1.6: Description of the KI-γ decryption function adopted to define the decryption primitive
of LEDAcrypt PKC

algorithm performs, in reverse order, the steps dual to the ones in the encryption procedure. The
value in the first lconst bits of the retrieved extended plaintext message is compared with the fixed
value of the constant considered in the KI-γ to reject the decryption outcome in case they mismatch.
As the McEliece decryption transformation employs a QC-LDPC code with an intrinsically non-
bounded decoding radius, the decryption process of the KI-γ may have an additional reason to fail.
As shown in the pseudocode, the IND-CCA2 property (given that the decoding failure rate is low
enough) is preserved making a decoding failure indistinguishable from an accidental error.

1.4.2 Constant weight encoding/decoding

A straightforward approach to implement the constant-weight encoding and decoding procedures
may consist in applying the conversion mandated by a combinatorial number system [23], which
maps (bijectively) any combination of n bits with t asserted bits to an integer value in the range
{0, . . . ,

(
n
t

)
} and viceversa thus, building an enumeration of the set of combinations. However,

computing the said bijection requires a computational effort in the same range as computing the
binomial

(
n
t

)
, which adversely impacts the performance of LEDAcrypt when n is in a range of tens

of thousands and t in the hundreds range.

An alternative solution relies on tackling the problem of performing the constant-weight encoding

Page 30

LEDAcrypt

of a binary string considering it as the result of a very efficient encoding of a sequence of integers
representing the length of the zero runs in the constant-weight string to be obtained. This approach
yields practically exploitable results when the run-length encoding known as Golomb Coding [14]
is exploited. Indeed, Golomb Coding encodes a sequence of binary symbols where one is far more
frequent than the other (zeroes are far more frequent than ones in our constant-weight words)
as a dense binary string with efficiencies which exceed 95% with the one-densities involved in
LEDAcrypt [38]. The approach to encode the binary string is the following: a parameter d is
estimated depending on the density of the zeroes in the string. In particular, given the probability
of a symbol of the sequence being equal to zero, the value of the parameter d is derived as the
integer rounding of the median of the distribution of the Bernoulli process modeling the occurrence
of null bit as the successful event and of an asserted bit as an unsuccessful one. Once the value of
d is determined, a run of zeroes of length l is encoded according to the following procedure:

i. Divide l by d, yielding a quotient q and a remainder r

ii. Encode q in unary, emitting q ’1’ symbols followed by a ’0’

iii. Encode r through the truncated binary encoding [14], thus employing at most dlog2(d)e bits.

Given the high encoding efficiency of the said procedure, it is highly likely that a random binary
string of appropriate length will decode to a constant weight string of weight t and length n if it is
interpreted as the encoding of a set of t zero runs, with an appropriate estimate of the value of d.

The efficiency can be raised through recomputing the estimate of d after each run-length of 0s is
encoded, as follows:

i. Compute the first estimate of d, said d1, considering as the probability of a ’1’ occurring
p1 = t1

n1
= t

n .

ii. Once the i-th length li of a run of zeroes is decoded, compute the new estimate of d, di+1,
considering as the probability of a ’1’ occurring pi+1 = ti−1

ni−li−1 .

This procedure yields an efficient way of obtaining a constant weight string, given an arbitrary
binary string of length blog2

(
n
t

)
c performing its decoding onto a sequence of the length of zero runs

present among the 1’s of the constant weight word. Symmetrically, the constant weight error vector
derived during the decryption procedure can be encoded into a compact binary string, yielding back
the value of eword which was generated during the encryption.

1.5 Efficient decoding for LEDAcrypt primitives

While it is possible to perform decoding of the private QC-LDPC code in LEDAcrypt employing
the parity-check matrix H and a classic BF decoder such as the one described in Algorithm 1, such
a choice would not exploit to the utmost the efficiency and the correction power of the underlying
QC-LDPC code. Indeed, given a syndrome s′ obtained as s′ = HQeT = H(eQT)T , the positions
of the errors e′ = eQT to be corrected are not uniformly distributed; instead they depend on the
positions of the set entries in QT , which are known to the decoder.

Page 31

LEDAcrypt

Starting from classical BF, we have developed an improved decoder that is specifically designed for
LEDAcrypt, where the positions of the set entries in e′ = eQT to be corrected are influenced by the
value of QT , as e′ is equivalent to a random error vector e with weight t multiplied by QT . Since
this improved decoder takes into account such a multiplication by the transpose of the matrix Q
for estimating the locations of the bits to flip with greater efficiency, we denote it as Q-decoder.

The Q-decoding procedure employed in LEDAcrypt KEM is detailed in Algorithm 12 and attempts
at reconstructing the secret error vector e from the received syndrome s. To this end, the peculiarity
of the Qdecode algorithm is that it directly reconstructs the value of e, where a common bit-
flipping decoder would retrieve e′ = eQT , thus requiring a further matrix multiplication to complete
the decryption action.

To perform the required syndrome decoding, Qdecode starts by computing the number of un-
satisfied parity checks in the current syndrome in the same way a standard BF algorithm does
(lines 5− 9 in Algorithm 12). Our approach to implement this computation is to exploit a sparse
representation for the transposition of the parity check matrix HT , which is taken as an input and
denoted as Htr in the algorithm1.

The differentiating point between the classical BF algorithm and the Q-decoding concerns how the
bits of the codeword being decoded are selected for flipping. Indeed, while employing a classical
BF algorithm would estimates set positions in e′, on the base of the sole number of unsatisfied
parity checks, the Q-decoder exploits the knowledge of the secret matrix QT to directly estimate
set positions in e. This allows achieving important reductions in the number of decoding iterations
and, as a further advantage, there is no need for computing and storing the inverse of the matrix
QT , which would have been necessary in the case of the decoding procedure returning e′.

To this end, the Q-decoding computes, for each bit of e being decoded (lines 12–13 in Algorithm 12)
a measure of similarity between the patterns of ones of a row of QT , blockwise cyclically shifted by
the position of the bit of e itself, and the unsatisfied parity checks vector. If the similarity metric
(lines 14–16 in Algorithm 12) is above a given threshold, both the error vector e and the value of
the syndrome s for the next iteration iter are updated (lines 18–23 in Algorithm 12). The value
of the aforementioned threshold can be obtained as a piecewise constant function of the current
syndrome weight and the code parameters. For efficiency reasons, the function is precomputed and
stored as a lookup table (LutS) containing pairs (weight, threshold). The Q-decoder computes the
weight of the syndrome and determines the highest weight w̄ among the ones in the lookup table,
which does not exceed the one of the syndrome (line 10 in Algorithm 12). The threshold for the
similarity is selected as the one paired to w̄ in LutS (line 11 in Algorithm 12). Details on how the
look-up table is obtained are given in Section 1.5.2. Inputs of the iterative decoding algorithm are
the p × 1 syndrome s′, and the matrices H and Q composing the parity-check matrix L = HQ,
while its status is composed by the current value of the syndrome and the current value of the
estimated error vector.

The motivation of the use of a Q-decoder in LEDAcrypt is in the fact that it allows taking into
account the particular geometry of the error vector e′. Indeed, the expanded error vector e′ = eQT

1This, in turn, allows to reduce the number of iterations of the innermost loop of the parity check computation
(lines 7–9 in Algorithm 12) from n0p

machine word
to dv. For example, considering the case of n0 = 2, p = 25931 on the

NIST reference platform (machine word = 64) the number of iterations drops from 811 to 17.

Page 32

LEDAcrypt

Algorithm 12: Q-decoding

Input: s′: QC-LDPC syndrome, binary vector of size p
Htr: transposed parity-check matrix, represented as an n0 × dv integer matrix
containing the positions in {0, 1, . . . , p− 1} of the set coefficients in the n0 blocks of
HT = [HT

0 | HT
1 | . . . | HT

n0−1]

Qtr: private matrix, represented as an n0 ×m, m =
∑n0−1

i=0 mi integer matrix
containing the positions in {0, . . . , n0p− 1} of the asserted coefficients in QT rows

Output: e: the decoded error vector with size n0p
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding failure
LutS: piecewise constant function yielding the value of the bit flipping threshold of
similarity, given the syndrome weight.
It is represented as an array of (weight, threshold) pairs for all the boundary values of
the piecewise function.

1 iter← 0
2 repeat
3 unsat pc← [0 | . . . | 0] // array of n0p counters of unsatisfied parity checks

4 currSynd← s′

5 for i = 0 to n0 − 1 do
6 for exp = 0 to p− 1 do
7 for h = 0 to dv − 1 do
8 if getBlockCoefficient(currSynd, (exp + Htr[i][h]) mod p) = 1 then
9 unsat pc[i · p+ exp]← unsat pc[i · p+ exp] + 1

10 w← max({w | (w, th) ∈ LutS ∧ w < weight(currSynd)})
11 th← th | (w, th) ∈ LutS

12 for i = 0 to n0 − 1 do
13 for exp = 0 to p− 1 do
14 similarity← 0
15 for k = 0 to m− 1 do

// qrow contains the positions of the ones of a row of Q rotated intra-block by exp

16 qrow[k]← Qtr[i][k]− (Htr[i][k] mod p) + ((exp + Qtr[i][k]) mod p)
17 similarity← similarity + unsat pc[qrow[k]]

18 if similarity ≥ th then
19 e[i · p+ j]← e[i · p+ j]⊕ 1
20 for k = 0 to m− 1 do
21 for h = 0 to dv − 1 do
22 idx← (Htr[qrow[k]/p][h] + (qrow[k] mod p)) mod p
23 s′[idx]← s′[idx]⊕ 1

24 iter← iter + 1

25 until s′ 6= 0 and iter < imax

26 if s′ = 0 then
27 return e, true
28 return e, false

Page 33

LEDAcrypt

can be written as the sum of the rows of QT indexed by the support of e, that is

e′ =
∑
j∈φ(e)

qj (1.15)

where φ(e) denotes the support of e. Since both Q and e are sparse (that is, m, t� n), cancellations
between ones are very unlikely. Then, this fact can be exploited to improve the decoding procedure.

Indeed, first of all the vector unsat pc expresses the likelihood of the bits in e′ being set, in the
sense that the larger the value of unsat pc[i] is, the larger the probability that e′i = 1. Then, the
entries of unsat pc are combined to obtain the likelihood values for set entries in e; indeed, let us
look at the j-th bit in e, and consider that

• If j /∈ φ (e), then it is very likely that qj has a very small number of common ones with all
the rows of QT forming e′. Hence the expected value of similarity is small.

• If j ∈ φ (e), then qj is one of the rows ofQT forming e′, hence the expected value of similarity
is large.

1.5.1 Q-decoder features

In this section we describe some of the features of the Q-decoder; we show that, when rejection
sampling on the secret key is applied, the Q-decoder outcome is equivalent to that of a BF decoder
applied on L = HQ, with some significant gain in the decoding complexity.

Lemma 1.5.1 (Equivalence of the bit-flipping decoder and Q-decoder) Let H and Q be
the two matrices forming the parity-check matrix L = HQ, and denote as L ← Lift(L), H ←
Lift(H), Q← Lift(Q), the matrices obtained through lifting their values from Z2 to Z. Assume
a BF procedure acting on L and a Q-decoding procedure acting on H and Q, both taking as input
the same syndrome value s, providing as output an updated syndrome and a guessed error vector
ê (which is initialized as ê = 01×n at the beginning of the computations), and employing the same
bit-flipping thresholds. If L = HQ, the BF and Q-decoding procedures compute as output the
same values for s and ê.

Proof. The functional equivalence can be proven showing that the update to the two state vectors,
the syndrome s and the current ê performed by the bit-flipping decoder and the Q-decoder leads
to the same values at the end of each iteration of the decoding algorithms. We start by observing
that the second phase of the BF and Q-decoder procedure will lead to the same state update of s
and ê if the values of the upc(BF) vector for the BF procedure and the upc(Q−dec) vector for the
Q-decoder coincide. Indeed, since the update only depends on the values of the unsatisfied parity-
checks and the flipping threshold b, if upc(BF) = upc(Q−dec) the update on ê and s will match. We
consider, from now on, the parity-check computation procedures as described before through matrix
multiplications over the integer domain, and prove that, during the first phase, the BF decoder
and the Q-decoder yield values of upc(BF) and upc(Q−dec) such that upc(BF) = upc(Q−dec) under
the hypothesis that the starting values for s and ê match. Considering the computation of upc(BF),
and denoting with lij the element of L at row i, column j, we have that upc(BF) = ς L, hence

upc
(BF)
j =

r−1∑
z=0

lzj sz. The computation of upc(Q−dec) proceeds as follows upc(Q−dec) = (ς H) Q =

Page 34

LEDAcrypt

n−1∑
i=0

(
r−1∑
z=0

sz hzi

)
qij =

r−1∑
z=0

(
n−1∑
i=0

hzi qij

)
sz.

Recalling the hypothesis L = HQ, it is possible to acknowledge that
n−1∑
i=0

hzi qij = lzj , which, in

turn, implies that upc(Q−dec) = upc(BF).

Lemma 1.5.2 (Computational advantage of the Q-decoder) Let us consider a bit-flipping
decoding procedure and a Q-decoder procedure both acting on the same parity-check matrix L =
HQ. The number of non-null entries of a column of H is dv � n, the number of non-null entries
of a column of Q is m� n, and the number of non-null entries of a column of L is dvm (assuming
no cancellations occur in the multiplication HQ). The computational complexity of an iteration of
the bit-flipping decoder equals O(dvmn + n), while the computational complexity of an iteration
of the Q-decoder procedure is O((dv +m)n+ n).

Proof. (Sketch) The proof can be obtained in a straightforward fashion with a counting argument
on the number of operations performed during the iteration of the decoding procedures, assuming a
sparse representation of H, L and Q. In particular, the amount of operations performed during the
unsatisfied parity-check count estimation phase amounts to O(dvmn) additions for the bit-flipping
decoder and to O((dv + m)n) for the Q-decoder, while both algorithms will perform the same
amount of bit flips O(n+ r) = O(n) in the bit-flipping and syndrome update computations.

When L 6= HQ, it is not possible to state the equivalence of BF decoding and Q-decoding according
to Lemma 1.5.1. However, some qualitative considerations about their behavior can be drawn
analyzing the product HQ in the aforementioned case. Indeed, an entry in the i-th row, j-th
column of L is different from the one with the same coordinates in HQ whenever the scalar product
i-th row of H and the j-th column of Q is ≥ 2. First of all, we note that such an event occurs with

probability
∑min{m,dc}

i=2

(mi)(
n−m
dc−i)

(ndc)
, which becomes significantly small if the code parameters (n,dc,m)

take values of practical interest such as the ones reported in Chapter 3. Since the number of entries
which have a different value in HQ with respect to L are expected to be small, the values of the
unsatisfied parity check counts upc(BF) and upc(Q−dec) are also expected to differ by a quite small
amount, while the computational complexity of the decoding algorithms will remain substantially
unchanged, as the term dvm in the BF decoder is reduced by a significantly small term, while the
one of the Q-decoder is unchanged.

1.5.2 Choice of the Q-decoder decision thresholds

One important aspect affecting performance of Q-decoders is the choice of the threshold values
against which the correlation is compared at each iteration. A natural choice is to set the threshold
used at the l-th iteration equal to the largest entry in unsatParityChecks(Q−dec). This strategy
ensures that only those few bits that have maximum likelihood of being affected by errors are flipped
during each iteration, thus achieving the lowest DFR. However, the strategy has some drawbacks in
terms of complexity, since the computation of the maximum correlation entails significant memory
storage and some repeated operations. For these reasons, we consider a different procedure, which
allows computing the threshold values on the basis of the syndrome weight at each iteration.
According to this approach, during an iteration it is sufficient to compute the syndrome weight and
read the corresponding threshold value from a look-up table. The look-up table just depends on

Page 35

LEDAcrypt

the system parameters and can thus be precomputed: with this strategy the threshold selection at
each iteration is really fast and, despite its very low complexity, still allows to achieve a sufficiently
low DFR, within a significantly smaller number of decoding iterations, as our numerical simulations
confirm.

Let us consider the l-th iteration of the Q-decoder, and denote as s(l) the input syndrome, corre-
sponding to

s(l) = H
(
e(l)QT

)T
= He′(l)T , (1.16)

where e′(l) = e(l)QT . We denote as tl the weight of e(l) and as t′l the weight of the corresponding
expanded error vector e′(l); because of the sparsity of both e and Q, we assume that t′l = mtl. We
introduce the following probabilities [5]

pcorrect−unsatisfied(t
′
l) =

min[n0dv−1,t′l]∑
j = 1, j odd

(
n0dv−1

j

)(
n−n0dv
t′l−j

)(
n−1
t′l

)
pincorrect−unsatisfied(t

′
l) =

min[n0dv−1,t′l−1]∑
j = 0, j even

(
n0dv−1

j

)(
n−n0dv
t′l−j−1

)(
n−1
t′l−1

)
(1.17)

where:

• pcorrect−unsatisfied(t
′
l) is the probability that a codeword bit is error-free and a parity-check

equation evaluates it wrongly, i.e., it is unsatisfied;

• pincorrect−unsatisfied(t
′
l) is the probability that a codeword bit is in error and a parity-check

equation evaluates it correctly, i.e., it is unsatisfied.

In both cases, the syndrome bit is equal to 1. So, the average syndrome weight at iteration l, which

we denote as w
(l)
s , can be related to the sole value of t′l as

w(l)
s = p

(
t′l
n
pincorrect−unsatisfied(t

′
l) +

n− t′l
n

pcorrect−unsatisfied(t
′
l)

)
. (1.18)

We point out that, since both the parity-check matrix and the error vector are sparse, the probability

of any wt(s(l)) being significantly different from w
(l)
s is negligible.

Therefore, eq. (1.18) allows predicting the average syndrome weight starting from t′l. We now
consider the i-th codeword bit and the corresponding entry in unsatParityChecks, which we

denote as upc
(Q−dec)
i . Let upc

(Q−dec)
i = σ ∈ [0;mdv]: then, the probability that such a codeword bit

Page 36

LEDAcrypt

is affected by an error can be written as

Pr
[
e

(l)
i = 1|upc(Q−dec)

i = σ
]

=
Pr
[
e

(l)
i = 1, upc

(Q−dec)
i = σ

]
Pr
[
upc

(Q−dec)
i = σ

] =

=
Pr
[
e

(l)
i = 1, upc

(Q−dec)
i = σ

]
Pr
[
e

(l)
i = 1, upc

(Q−dec)
i = σ

]
+ Pr

[
e

(l)
i = 0, upc

(Q−dec)
i = σ

] =

=

1 +
Pr
[
e

(l)
i = 0, upc

(Q−dec)
i = σ

]
Pr
[
e

(l)
i = 1, upc

(Q−dec)
i = σ

]
−1

(1.19)

where e
(l)
i is the i-th bit e(l). After some calculations, we obtain

Pr
[
e

(l)
i = 1|upc(Q−dec)

i = σ
]

=
1

1 + n−tl
tl

(
pcorrect−unsatisfied(tl)
pincorrect−unsatisfied(tl)

)σ (
1−pcorrect−unsatisfied(tl)

1−pincorrect−unsatisfied(tl)

)mdv−σ
(1.20)

where pcorrect−unsatisfied(tl) and pincorrect−unsatisfied(tl) are given in (1.17), with tl as argument
instead of t′l.

Adding the i-th row of QT to the expanded error vector e′ is the same as flipping the i-th bit of
the error vector e. Hence, we can focus on e and on how its weight tl changes during decoding
iterations. The values of tl can be estimated as t′l/m, due to the sparsity, while those of t′l can be
estimated according to (1.18).

We now want to define values of upc
(Q−dec)
i for which the decision to flip the i-th codeword bit is

sufficiently reliable; this condition can be expressed as

Pr
[
e

(l)
i = 1|upc(Q−dec)

i = σ
]
> (1 + ∆)Pr

[
e

(l)
i = 0|upc(Q−dec)

i = σ
]

(1.21)

where ∆ ≥ 0 represents a margin that must be chosen taking into account the DFR and complexity:
increasing ∆ decreases the DFR but increases the number of decoding iterations. So, a trade-off
value of ∆ can be found that allows achieving a low DFR while avoiding unnecessary large numbers
of iterations.

Since Pr
[
e

(l)
i = 0|upc(Q−dec)

i = σ
]

= 1− Pr
[
e

(l)
i = 1|upc(Q−dec)

i = σ
]
, (1.21) can be rewritten as

Pr
[
e

(l)
i = 1|upc(Q−dec)

i = σ
]
>

1 + ∆

2 + ∆
. (1.22)

Pr
[
e

(l)
i = 1|upc(Q−dec)

i = σ
]

is an increasing function of σ, hence the minimum value of σ such

that (1.22) is satisfied can be computed as

b(l) = min

{
σ ∈ [0;mdv] : Pr

[
ei = 1|upc(Q−dec)

i = σ
]
>

1 + ∆

2 + ∆

}
(1.23)

and used as the decision threshold at iteration l.

Based on the above considerations, the procedure to compute the decision threshold value per each
iteration as a function of the syndrome weight can be summarized as follows:

Page 37

LEDAcrypt

i. The syndrome weights corresponding to t′l = 0,m, 2m, · · · ,mt (which are all the possible
values of t′l neglecting cancellations) are computed according to (1.18). These values are
denoted as {ws(0), ws(m), · · · , ws(mt)}.

ii. At iteration l, given the syndrome weight w̄s
(l), the integer j ∈ [0, t] such that ws(jm) is as

close as possible to w̄s
(l) is computed.

iii. Consider tl = j and compute b(l) according to (1.23) using (1.20). The value of b(l), so
obtained, is used as the decoding threshold for iteration l.

The above procedure can be implemented efficiently by populating a look-up table with the pairs
{wj , bj}, sequentially ordered. During an iteration, it is enough to compute w̄s

(l), search the largest
wj in the look-up table such that wj < w̄s

(l) and set b(l) = bj .

We have observed that, moving from the largest values of wj to the smallest ones, the threshold
values computed this way firstly exhibit a decreasing trend, then start to increase. According to
numerical simulations, neglecting the final increase is beneficial from the performance standpoint.
Therefore, in the look-up table we replace the threshold values after the minimum with a constant
value equal to the minimum itself.

1.6 Analysis of the decryption failure rate

In this section we provide a theoretical analysis of the DFR of the Q-decoder used in LEDAcrypt
instances with long term keys, adopting two iterations in which the thresholds are suitably chosen.
In particular, the threshold of the second iteration is obtained through an analysis of each specific
key pair, in order to ensure that the decoder can correct all error patterns whose weight does not
exceed some value t̄. The threshold of the first iteration is then optimized in order to guarantee
that the number of residual errors is within the error correction capability of the second decoder
iteration with sufficiently high probability. We first find the conditions under which the second
iteration is able to correct all residual bit errors; then we study the first iteration in probabilistic
terms, and compute the probability that the number of its residual bit errors is such that the second
iteration achieves complete correction (i.e., the number of residual errors is ≤ t̄).

1.6.1 Null DFR for a single Q-decoder iteration

We consider a single iteration of the Q-decoder, applied on a syndrome s corresponding to an error
vector e with weight t. To characterize the correction capabilities of the Q-decoder, we consider the
case where L = HQ has no cancellations, as enforced by our rejection sampling of the keys. Under
this hypothesis, it is possible to use Lemma 1.5.1, and analyze the behavior of the corresponding bit
flipping decoder acting on L, with the same bit flipping thresholds of the Q decoder. Let b denote
the decoding threshold; ςi denotes the i-th entry in ς and the element in the i-th row and j-th
column in L is denoted as l i,j . The number of unsatisfied parity checks of the i-th bit is denoted
as upci, and is computed as

upci =
r−1∑
j=0

ςj l j,i =
r−1∑
j=0

l j,i

(
n−1⊕
k=0

eklj,k

)
=

∑
j∈[0;r−1]
lj,i=1

(
n−1⊕
k=0

eklj,k

)
.

Page 38

LEDAcrypt

From now on, we will denote the weight of a column of L as v = mdv; we thus have that, for all the
possible error locations i ∈ {0, . . . , n − 1}, upci ∈ {0, . . . , v}. We will also denote with li the i-th
column of l, and with φ(li) the set of the positions of the non null elements in li. Let L(S) denote
the matrix composed by the rows of L indexed by a set of integers S having elements s ∈ S such
that s ∈ {0, . . . , p−1} and l(S),i denote its i− th column. We thus have that L(φ(li)) is a rectangular
matrix with v rows of n elements, where the i-th column, l(φ(li)),i is constituted by all ones.

Equation (1.24) can be thus rewritten as:

upci = wt

 ⊕
j∈φ(ej)

l(φ(li)),j

 = wt
(
L(φ(li))e

T
)
. (1.24)

Recall that the bit flipping decoder will change the i-th bit of the initially null error estimate ê if
and only if upci is greater or equal than threshold b. Depending on whether the correct value for
the error bit is ei = 0 or ei = 1, the decoder will make a correct choice at the first iteration if it
does not flip the i-th bit, or if it does, respectively. We now consider a worst case analysis for the
capability of the decoder to make the correct flipping choice. In the following, we will denote the
support of the vector e as φ(e).

If ei = 0, the decoder will make a correct decision if upci < b: we thus consider the following upper
bound for upci, assuming ei = 0:

upci = wt
(
L(φ(li))e

T
)

= wt

 ⊕
j∈φ(ej)

l(φ(li)),j

 ≤ ∑
j∈φ(e)

wt
(
l(φ(li)),j

)
. (1.25)

By contrast, if ei = 1 the decoder will make a correct decision if upci ≥ b. We thus consider the
following lower bound for upci assuming ei = 1:

upci = wt

 ⊕
j∈φ(ej)

l(φ(li)),j

 = wt

l(φ(li)),i ⊕
⊕

j∈φ(ej)\i

l(φ(li)),j

= v − wt

 ⊕
j∈φ(ej)\i

l(φ(li)),j

 ≥ v − ∑
j∈φ(ej)\i

wt
(
l(φ(li)),j

)
. (1.26)

A relevant quantity in Equation (1.26) is the Hamming weight of the columns l(φ(li)),j where i 6= j.
Indeed, it represents the amount of interference on the upci value induced by the presence of errors
in positions different from i.

To ease the computation of wt(l(φ(li)),j), we observe that it is equivalent to wt (φ(li) ∩ φ(lj)), since
L(φ(li)) is constituted of the rows of L where the column li contains a one, and only the ones present
in such rows of the j-th column of L will contribute to wt

(
l(φ(li)),j

)
. We therefore define Γ as a

n × n positive integer matrix for which its i-th row, j-th column entry , γi,j , is wt (φ(li) ∩ φ(lj)).
We can rewrite, after this definition, Equation (1.25) and Equation (1.26) as:

upci ≤
∑
j∈φ(e)

γi,j and upci ≥ v −
∑

j∈φ(ej)\i

γi,j (1.27)

Page 39

LEDAcrypt

respectively.

In particular, we here consider the case in which the number of unsatisfied parity-check equations,
for the case of an error affected bit, is always larger than that of an error free bit; in such a case,
the decoder can correct all the input error patterns. In other words, it must be∑

j∈φ(e)

γi,j < v −
∑

j∈φ(ej)\i

γi,j , ∀e ∈ Fn2 , wt (e) = t. (1.28)

Let

µ(z) = max
i∈N,e∈Fn2

wt(e)=z, ei=0

 ∑
j∈φ(e)

γi,j

. (1.29)

For the case of ei = 0 we have
upci ≤ µ(t), (1.30)

while, for ei = 1, it is
upci ≥ v − µ(t− 1). (1.31)

Equation (1.28) can then be rewritten as

µ(t) + µ(t− 1) < v. (1.32)

Let t̄ be the largest integer for which condition (1.32) is satisfied; then, if the decoding threshold
is in [µ(t) + 1; v − µ(t)], the decoder will correct all error vector of weight t ≤ t̄.

1.6.2 Efficient computation of t̄

We will now prove that Γ is quasi cyclic. Let l i be the i-th column of L. Note that Γ is a
symmetric matrix, since it holds that γi,j = γj,i, for all pairs of indexes i, j due to the symmetry of
the intersection operation. Consider the indexes i, j ∈ {0, . . . , n0p − 1} as obtained as i = pip + i′

and j = pjp + j′, respectively, with ip, jp ∈ {0, . . . n0 − 1} and i′, j′ ∈ {0, . . . , p − 1}. Denoting
with P the p × p circulant permutation matrix associated to the cyclic shift of one position, and
observing that P p = Ip, and that (P a)T = P p−a, we have that

l i = P i
′
hip , l j = P j

′
hjp (1.33)

From this observation, we can derive

γi,j = lTi l j =
(
P i
′
l ip
)T

P j
′
l jp

= lTip P
p−i′P j

′
l jp = lTip P

p+j′−i′ l jp

=

{
lTip P

j′−i′ l jp if j′ > i′

lTip P
i′−j′ l jp if j′ < i′

=

{
lTip lpjp+j′−i′ if j′ > i′

lTip lpjp+p−(i′−j′) if j′ < i′

=

{
γpip,pjp+j′−i′ if j′ > i′

γpip,pjp+i′−j′ if j′ < i′

= γpip,pjp+(j′−i′ mod p), (1.34)

Page 40

LEDAcrypt

which proves that matrix Γ is quasi cyclic with block size p, and can thus be written as:

Γ =

Γ0,0 Γ0,1 · · · Γ0,n0−1

Γ1,0 Γ1,1 · · · Γ1,n0−1
...

...
. . .

...
Γn0−1,0 Γn0−1,1 · · · Γn0−1,n0−1

 , (1.35)

where each Γ(i,j) is a p × p circulant integer matrix; in particular, due to symmetry, we also have
that ΓTi,j = Γj,i.

Because of these properties, it can be easily shown that the rows of Γ are not fully independent
among themselves; in particular, this means that the whole matrix is described by a subset of its
elements (actually, only p−1

2 n0(n0 + 1)− n0 entries are needed).

Essentially, this property can be used to obtain an efficient method for computing the value of
t̄ which, according to Equation (1.32), only depends on the values of µ(t). In the following we
describe how, for the case of LEDAcrypt systems, the computation of µ(t) can be efficiently made.

First of all, the following procedure can be used to compute all the independent entries of Γ:

i. choose i ∈ {0, 1, · · · , n0 − 2};

ii. choose j ∈ {i, · · · , n0 − 1};

iii. define φi =
{
a

(i)
0 , · · · , a(i)

mdv−1

}
and φj =

{
a

(j)
0 , · · · , a(j)

mdv−1

}
as the supports of the first

column of Li and Lj , respectively;

iv. define ψi,j as the length-p vector whose z-th entry is computed as
∣∣∣φi ∩ φ′j∣∣∣, with

φ′j = {a+ z mod p| a ∈ φj} .

If i = j, the first entry of ψi,j is set as 0.

Once the vectors ψi,j have been obtained, the value of µ(t) can be computed as follows:

i. start with µ(t) = 0, and consider all values i ∈ [0;n0 − 1];

ii. for each value of i, concatenate the vectors ψi,j , with j ∈ [i;n0 − 1], and vectors ψj,i, with
j ∈ [0; i− 1]; sort the elements of the so obtained vector in descending order and consider the
sum of its first t elements: if this sum is larger than µ(t), update µ(t).

1.6.3 Probabilistic analysis of the first iteration of the Q-decoder

In this section we provide a probabilistic analysis for the first iteration of the Q-decoder, with the
aim of obtaining the probability that the decoder can, in the first iteration, correct a sufficiently
large amount of errors. We consider the decoding procedure employed by the LEDA cryptosystems
assuming that Lemma 1 holds. Given the equivalence of the BF decoder and Q-decoder provided
by this Lemma, for the sake of simplicity, we will reason on the application of one iteration of the

Page 41

LEDAcrypt

BF decoder taking as input the r × n parity-check matrix L = HQ, assumed to be computed as
a cancellation-free product between H and Q. Thus, L corresponds to the parity-check matrix
of a regular LDPC code, with constant row-weight d′ − c = n0mdv and constant column weight
d′v = mdv. We denote the input syndrome as s = LeT , where e is a length-n vector with weight
t, and consider an initially null guessed error vector ê = 01×n. We denote with b the employed
decoding threshold, and with upcj the number of unsatisfied parity-check equations in which the j-
th bit participates; the decoder will flip the j-th position, i.e., will set êj = 1, if and only if upcj ≥ b.
Then, the second iteration will take as input the syndrome obtained as s+ LêT , corresponding to
the error vector e⊕ ê.

In the following, we model the number of residual errors which are left by the first decoder iteration,
which corresponds to wt (e⊕ ê), i.e., to the number of differences between the actual error vector
e and the guessed ê. We define T as a random variable over the discrete domain of integers
{0, . . . , n}, t ≥ 0 having a probability mass function Pr [T = τ], τ = wt (ê⊕ e) depending on the
decoding strategy and the code parameters.

Let us consider a position j, and take into account the fact that a difference exists when either
event {êj = 0, ej = 1} of {êj = 1, ej = 0} happens. To quantify such probabilities, we recall the
probabilities pcorrect−unsatisfied and pincorrect−unsatisfied already introduced in Section 1.5.2.

Let pcorrect be the probability of occurrence of the event {êj = 1|ej = 1}, i.e., the probability that
the decoder flips (i.e., sets êj = 1) a bit in a position corresponding to a set entry in the actual
error vector e. Such a probability can be obtained as

pcorrect =

d′v∑
j=b

(
d′v
j

)(
pincorrect−unsatisfied(t)

)j(
1− pincorrect−unsatisfied(t)

)d′v−j
. (1.36)

Analogously, we define pinduce as the probability that event {ê = 1|ej = 0} occurs, that is, the
probability that the decoder flips a bit in a position j which corresponds to a null entry in the
actual error vector e. Such a probability can be obtained as

pinduce =

d′v∑
j=b

(
d′v
j

)(
pcorrect−unsatisfied(t)

)j(
1− pcorrect−unsatisfied(t)

)d′v−j
. (1.37)

Note that pcorrect is indeed the probability that the Q-decoder performs a correct flip at the first
iteration, while pinduce is the one of performing a wrong flip. By assuming that the decisions on
the bits being flipped or not are taken independently, we have

Pr
[
fcorrect = c, fwrong = w

]
= Pr [fcorrect = c] · Pr

[
fwrong = w

]
, , (1.38)

such that the probabilities of the Q-decoder performing c ∈ {0, . . . , t} correct flips out of t or
w ∈ {0, . . . , n − t} wrong flips out of n − t can be quantified introducing the random variables
fcorrect and fwrong, as follows

Pr [fcorrect = c] =

(
t

c

)
pcorrect

c (1− pcorrect)
t−c ,

P r
[
fwrong = w

]
=

(
n− t
w

)
pinduce

w (1− pinduce)
n−t−w .

(1.39)

Page 42

LEDAcrypt

It is easy to see that, in the case of fcorrect = c and fwrong = w, we have wt (e+ ê) = t + w − c:
thus, the probability that the guessed error vector ê, at the end of the computation of the first
iteration of the Q-decoder, differs from the actual error vector in τ ∈ {0, . . . , t} positions can be
obtained as follows

Pr [T = τ] =
t∑

i=t−τ
Pr [fcorrect = i] · Pr

[
fwrong = τ + i− t

]
. (1.40)

This result permits us to estimate the probability of having a given number of errors τ ∈ {0, . . . , n}
left to be corrected after the first iteration of the Q-decoder, since in this case the hypothesis on
the independence of the decisions to flip or not to flip a given variable can be assumed safely.

1.6.4 DFR characterization for a two-iteration Q-decoder

In this section we describe how the results obtained in the previous sections can be combined, in
order to derive a theoretical characterization of the DFR. We consider a Q-decoder performing two
iterations, and denote with b0 and b1 the decoding thresholds which are employed in the first and
second iteration, respectively. In particular, according to the analysis provided in section 1.6.1, we
suppose that the threshold b1 has been chosen such that the decoder can correct all error patterns
whose weight is not greater than some integer t̄. Then, all initial error vectors of weight t which
result, after the first decoder iteration, in a number of residual errors that is ≤ t̄, can be corrected
by the decoder. This means that the DFR of this two iterations Q-decoder can be overestimated
by the probability that the first iteration leaves more than t̄ errors to be corrected. By means of
Equation (1.40), such a probability can be estimated as

Pr [T > t̄] = 1−
t̄∑

τ=0

Pr [T = τ] . (1.41)

We have used this criterion to devise parameters sets with properly low DFR values, in order to
allow for the use of long term keys.

Page 43

Chapter 2

Security analysis of LEDAcrypt

In order to analyze the security of the LEDAcrypt primitives, we start by providing a quantitative
assessment of NIST’s security level targets in terms of the number of classical and quantum ele-
mentary operations required to perform an exhaustive key search against AES. Once the required
security levels are delineated we analyze the attacks against LEDAcrypt highlighting their com-
putational complexity, with the goal of providing an automated parameter design procedure for
LEDAcrypt cryptosystems.

2.1 Security level goals

The bar to be cleared to design parameters for post-quantum cryptosystems is the computational
effort required on either a classical or a quantum computer to break the AES with a key size of
λ bits, λ ∈ {128, 192, 256}, through an exhaustive key search. The three pairs of computational
efforts required on a classical and quantum computer correspond to NIST Category 1, 3, and 5,
respectively [32]. Throughout the design of the parameters for the LEDA cryptosystems we ignore
Categories 2 and 4: if a cipher matching those security levels is required, we advise to employ the
parameters for Categories 3 and 5, respectively.

The computational worst-case complexity of breaking AES on a classical computer can be estimated
as 2λCAES, where CAES is the amount of binary operations required to compute AES on a classical
computer on a small set of plaintexts, and match them with a small set of corresponding ciphertexts
to validate the correct key retrieval. Indeed, more than a single plaintext-ciphertext pair is required
to retrieve AES keys [15]. In particular, a validation on three plaintext-ciphertext pairs should be
performed for AES-128, on four pairs for AES-192 and on five for AES-256.

Willing to consider a realistic AES implementation for exhaustive key search purposes, we refer
to [43], where the authors survey the state-of-the-art of Application-Specific Integrated Circuit
(ASIC) AES implementations, employing the throughput per Gate Equivalent (GE) as their figure
of merit. The most performing AES implementations are the ones proposed in [43], and require
around 16ki GEs. We thus deem reasonable to estimate the computational complexity of an exe-
cution of AES as 16ki binary operations. We are aware of the fact that this is still a conservative
estimate, as we ignore the cost of the interconnections required to carry the required data to the
AES cores.

44

LEDAcrypt

Table 2.1: Classical and quantum computational costs to perform an exhaustive key search on AES

NIST AES Key Size Classical Cost Quantum Cost [15]
Category (bits) (binary operations) (quantum gates)

1 128 2128 · 214 · 3 = 2143.5 1.16 · 281

3 192 2192 · 214 · 4 = 2208 1.33 · 2113

5 256 2256 · 214 · 5 = 2272.3 1.57 · 2145

The computational complexity of performing an AES key retrieval employing a quantum com-
puter was measured first in [15], where a detailed implementation of an AES breaker is provided.
The computation considers an implementation of Grover’s algorithm [16] seeking the zeros of the
function given by the binary comparison of a set of AES ciphertexts with the encryption of their
corresponding plaintexts for all the possible key values. The authors of [15] chose to report the
complexity of the quantum circuit computing AES counting only the number of the Clifford and
T gates. Selecting a different choice for the set of quantum gates employed to realize the AES
circuit may yield a different complexity; however, the difference will amount to a reasonably small
constant factor, as it is possible to re-implement the Clifford and T gates at a constant cost with
any computationally complete set of quantum gates. We thus consider the figures reported in [15]
as a reference for our parameter design procedure. In Table 2.1 we summarize the computational
cost of performing exhaustive key searches on all three AES variants (i.e., with 128, 192, and 256
bits long keys), both considering classical and quantum computers. For the sake of simplicity, in
the following we will round up fractional exponents of the reported complexities to the next integer
value.

2.2 Hardness of the underlying problem

The set of computational decision problems for which an efficient solution algorithm can be devised
for a non-deterministic Turing Machine (TM) represents a fruitful computational class from which
primitives for asymmetric cryptosystems have been designed. Such a computational class, known
as the Nondeterministic-Polynomial (NP) class, is characterized by problems for which it is efficient
(i.e., there is a polynomial-time algorithm) to verify the correctness of a solution on a deterministic
TM, while finding a solution to the problem does not have in general an efficient algorithm on a
deterministic machine, hence the computational asymmetry required to build a cryptosystem.

When considering a quantum TM, i.e., the abstract computational model for a quantum computer,
the class of problems which can be solved in polynomial time, with the quantum TM providing the
correct answer with probability > 2

3 , is known as the Bounded-error Quantum Polynomial (BQP)
time class [8].

In 1997 Peter Shor proved that the integer factoring problem, which has its decisional version in
NP, is effectively in BQP [40], in turn demonstrating that a widely adopted cryptographic trapdoor
function can be broken in polynomial time by a quantum computer. Consequentially, to devise a
proper post-quantum asymmetric primitive it is crucial to choose a computational problem which
resides outside BQP as its underlying foundation. While there is no current formal proof, a sub-

Page 45

LEDAcrypt

class of NP, the NP-complete problem class, is widely believed to contain computational problems
not belonging to BQP, thus allowing only a polynomial speedup in their solution with a quantum
TM.

LEDAcrypt is constructed starting from the computational search problems of either performing the
decoding of a codeword (i.e., finding the error vector affecting a codeword) given a generic random
linear code, or decoding a syndrome (i.e., finding the unique error vector corresponding to it) via a
generic random parity-check matrix. The decision problems corresponding to the aforementioned
problems were shown to be NP-complete in [7, 34]. As there is currently no search to decision
reduction, we can state that decoding a codeword and decoding a syndrome for a generic linear
code are NP-Hard. We note that, at the current state-of-the-art, no method faster than the search
is known to solve the corresponding decision problem.

LEDAcrypt primitives rely on the indistinguishability of their generator matrix G and parity-check
matrix H from the ones of a random linear code. At the moment of writing, the only technique
known to exploit the non random nature of the H and G matrices of LEDAcrypt is to rely on
the low-weight of the corresponding secret QC-LDPC to perform a guess on the structure on the
underlying code.

2.3 Attacks based on exhaustive key search

Enumerating all the possible values for the secret key is, in principle, applicable to any cryptosys-
tem. While the cost of performing an exhaustive key search is dominated by less computational
demanding key recovery strategies in LEDAcrypt cryptosystems, we consider partial key enumer-
ation attacks, aiming at scanning through all the possible H or Q sparse matrices as a support for
other strategies. While there is no standing attack benefiting from an enumeration of possible H,
from the enumeration of possible Q matrices or from the enumeration of both of them, we deem
reasonable adding such a constraint to the design of the parameter sets as a peace-of-mind measure
and obtain a system for which the said enumerations are computationally unfeasible.

We recall that H is a block circulant binary matrix constituted by 1× n0 circulant-blocks, each of
which having size equal to p bits, while n0 ∈ {2, 3, 4} and p is a prime such that ord2(p) = p − 1
(i.e., 2p−1 mod p = 1 mod p). Q is a binary circulant-block matrix constituted by n0 × n0 binary
circulant-blocks with size p.

Considering that each row of a circulant-block of H has Hamming weight dv, a straightforward
counting argument yields]H =

(
p
dv

)n0 as the number of possible choices for H. The number of
possible choices for Q, denoted as]Q, can be derived starting from the consideration that the
weights of a row of each circulant block in a block-row of Q are equal for all the rows up to a
rotation of the weights of the blocks. Such weights, denoted as {m0, . . . ,mn0−1}, allow to write the

number of possible choices for Q as]Q =

 ∏
i∈{m0,...,mn0−1}

(
p

i

)n0

.

We also consider the possibility that an attacker performs an exhaustive key search employing a
quantum computer. In such a case, the best scenario for the attacker is that it is possible to exploit
Grover’s algorithm to compute either H or Q, and test its correctness in deriving the other matrix
and the corresponding public key. Assuming conservatively that the test can be implemented on

Page 46

LEDAcrypt

a quantum computer, we consider the resistance against exhaustive key search with a quantum
computer to be the minimum between

√
]H and

√
]Q for the search over H and Q, respectively.

In our approach, to prevent attacks relying on the partial exhaustive search for the value of either
H or Q, we considered the remainder of the attack strategy which may be employed to derive the
matrix which is not found via exhaustive search to have a constant complexity (i.e., Θ(1)).

Therefore, we design the LEDAcrypt parameters such that any attack strategy which leverages
the exhaustive search of H or Q to speedup a key recovery will, in turn, have a computational
complexity matching or exceeding the required security level.

2.4 Attacks based on information set decoding

The most computationally effective technique known to attack the LEDAcrypt schemes is the same
technique solving the Syndrome Decoding Problem (SDP) on random binary linear block codes
and known as ISD. ISD was invented as a general efficient decoding technique for a random binary
linear block code by Eugene Prange in [36]. While ISD is indeed more efficient than guessing the
error affected positions in an incorrect codeword, its complexity is still exponential in the number
of errors affecting the codeword.

ISD can thus be employed as a message recovery attack in both McEliece and Niederreiter cryptosys-
tems: in the former, it will recover the error pattern from the error affected codeword constituting
the ciphertext, allowing to recover the original message; while in the Niederreiter cryptosystem it
will derive the error vector from a syndrome, under the assumption that it was added to a null
codeword. When a message recovery attack of this kind is performed against a cryptosystem ex-
ploiting quasi cyclic codes, such as the case of LEDAcrypt, it is known that a speedup equal to the
square root of the circulant block size can be achieved [39].

ISD algorithms have a long development history, dating back to the early ’60s [36], and provide a
way to recover the error pattern affecting a codeword of a generic random linear block code given
a representation of the code in the form of either its generator or parity-check matrix.

Despite the fact that the improvement provided by ISD over the straightforward enumeration of all
the possible error vectors affecting the codeword is only polynomial, employing an ISD technique
provides substantial speedups. It is customary for ISD variant proposers to evaluate the effectiveness
of their attacks considering the improvement on a worst-case scenario as far as the code rate and
number of corrected errors goes (see, for instance [6]). Such an approach allows to derive the
computational complexity as a function of a single variable, typically taken to be the code length
n, and obtaining asymptotic bounds for the behavior of the algorithms.

In our parameter design, however, we chose to employ non-asymptotic estimates of the compu-
tational complexity of the ISD attacks. Therefore, we explicitly compute the amount of time
employing a non-asymptotic analysis of the complexity of ISD algorithms, given the candidate pa-
rameters of the code at hand. This approach permits us to retain the freedom to pick rates for our
codes which are different from the worst-case one for decoding, thus exploring different trade-offs in
the choice of the system parameters. It is common for ISD variants to have free parameters, which
should be tuned to achieve optimal performance. We sought the optimal case by explicitly comput-
ing the complexity of the ISD variant for a large region of the parameter space, where the minimum
complexity resides. We consider the ISD variants proposed by Prange [36], Lee and Brickell [26],

Page 47

LEDAcrypt

Leon [27], Stern [41], Finiasz and Sendrier [12], and Becker, Joux, May and Meurer (BJMM) [6],
in our computational complexity evaluation on classical computers. The reason for considering
all of them is to avoid concerns on whether their computational complexity in the finite-length
regime is already well approximated by their asymptotic behavior. For all the attacks, we consider
the complexity as obtained with a logarithmic memory access cost, considering as the amount of
required memory only the one taken by the lists in case of collision-based ISD techniques. Such a
choice is mutuated by the fact that the size of such lists is exponential in the code parameters, and
thus has a small but non negligible impact on the computation complexity.

In order to estimate the computational complexity of ISD on quantum computing machines, we
consider the results reported in [9], which are the same employed in the original specification [4].
Since complete and detailed formulas are available only for the ISD algorithms proposed by Lee
and Brickell, and Stern [41], we consider those as our computational complexity bound. While
asymptotic bounds show that executing a quantum ISD derived from the May-Meurer-Thomae
(MMT) algorithm [30] is faster than a quantum version of Stern’s [22], we note that there is no
computational complexity formulas showing this in the finite regime.

2.4.1 Key recovery attacks based on information set decoding

In the case of McEliece and Niederreiter cryptosystems instantiated with public codes characterized
by sparse parity-check matrices, here of interest, ISD algorithms can also be used to mount a key
recovery attack. In fact, in this case the dual of the public code contains low weight codewords that
coincide with the rows of the sparse parity-check matrix of the public code. The latter can hence be
recovered by searching for low codewords in the dual of the public code, and ISD can be exploited
for this purpose. This indeed is a key recovery attack, since recovering a sparse parity-check matrix
for the public code is sufficient for an attacker to perform efficient decoding.

In LEDAcrypt, the public key is the representation of a code C whose parity-check matrix is
obtained as L = HQ, in the form

L =
[
L0, L1, · · · , Ln0−1

]
, (2.1)

where each block Li is a p× p circulant with weight d′v ≤ dvm.
It can be shown that C has minimum distance 2d′v; indeed, let us consider two distinct integers
0 ≤ i0, i1 ≤ n0 − 1, and define the p× n0p matrix C as follows

C = [C0, · · · , Cn0−1], with Ci ∈ Fp×p2 , Ci =

0 if i 6= i0, i1

LTi1 if i = i0

LTi0 if i = i1

. (2.2)

It is easy to see that the rows of C are codewords of C, as

CLT = Ci0L
T
i0 + Ci1L

T
i1 = LTi1L

T
i0 + LTi0L

T
i1 = 0, (2.3)

where the last equality is justified by the fact that multiplication between circulant matrices is
commutative.

Let c be a row of a matrix C as in (2.2); if the attacker succeeds in determining c, he then succeeds
in recovering two blocks of the secret matrix L. It is easy to see that this is enough to recover the
whole L from the public key.

Page 48

LEDAcrypt

Each such codeword c has weight 2d′v, and can thus be searched by exploiting an ISD algorithm
searching for low weight codewords.

In particular, in such a case the opponent needs to obtain the systematic generator matrix for C,
that is in the form

Gsys =

Ip

Ip
. . .

Ip

∣∣∣∣∣∣∣∣∣
G0

G1
...

Gn0−2

 =

Ip

Ip
. . .

Ip

∣∣∣∣∣∣∣∣∣∣

(
L0L

−1
n0−1

)T(
L1L

−1
n0−1

)T
...(

Ln0−2L
−1
n0−1

)T

 . (2.4)

Such a matrix corresponds to the public key of LEDAcrypt PKC, while it can be obtained with
some simple computations from LEDAcrypt KEM. Then, a key recovery attack from Gsys can be
performed in two different ways:

i. apply ISD on Gsys, searching for codewords of weight ≤ 2d′v. In such a case, we have to
consider that the ISD obtains a speed-up due to the fact that C contains multiple codewords
of weight 2d′v, and the opponent is satisfied with each one of them. We have

(
n0

2

)
possible

matrices C as in Eq. (2.2), each one containing p rows: thus, the number of codewords in C
with weight 2d′v (and the subsequent speed-up in ISD) is obtained as p

(
n0

2

)
.

ii. choose a block Gi and form the matrix

G′ = [Ip, Gi]. (2.5)

The matrix G′ corresponds to the generator matrix of a code C′, with length 2p and dimension
p, which contains codewords of weight 2d′v. Indeed, we have

LTn0−1G
′ = [LTn0−1;LTn0−1

(
LiL

T
n0−1

)T
] = [LTn0−1;LTi]. (2.6)

Thus, each information sequence equal to a row of LTn0−1 corresponds to a codeword, in C′,
of weight 2d′v. Thus, an ISD algorithm can be applied on G′, searching for such codewords.

Alternatively, the opponent might attack the dual code of C, i.e, the code having L as one of its
generator matrices. The rows of L have weight d′c = n0mdv, which is comparatively small with
respect to the codeword length n. Any sparse row of L is a low-weight codeword belonging to the
dual of the public code, and can thus be searched through an ISD algorithm.

Some potentially weak keys may exist, when the product between the matrices H and Q causes a
too much large number of cancellations. In such a case, the matrix L will have a density that is
slightly reduced than the maximum one: in other words, there will be circulant blocks Li having
row and column weight < mdv, and this will result in a row weight of L being < n0mdv. The
highest security level is achieved when the row weight of L is maximal so, in all these cases, ISD
key - recovery attacks will be facilitated. Furthermore, having a fixed row weight for L facilitates
constant-time implementation. In order to avoid these drawbacks, both LEDAcrypt KEM and
LEDAcrypt PKC key generation phases employ a rejection sampling procedure, which is adopted
to ensure that L always has maximal column weight (and, subsequently, maximum row weight).
The key generation algorithm starts with the random extraction of matrices H and Q, which are
subsequently multiplied to compute L; the rejection sampling is applied on L: if the obtained L

Page 49

LEDAcrypt

has L has row weight < n0mdv, then it is discarded and a new pair is randomly selected. This way,
we guarantee that ISD key recovery attacks have the highest achievable complexity. We point out
that the complexity of the rejection sampling is particularly low and has, practically, a negligible
impact on the system performances. In addition, the rejection rate of the keys is particularly low
since, for the system parameters we have designed, randomly generated matrices H and Q lead to
a full weight L with very high probability; a theoretical estimate of the rejection rate is provided
in Appendix A.

We consider such key recovery attacks in our parameter design, evaluating their complexity for all
the aforementioned ISD algorithms.

2.5 Attacks based on Bob’s reactions

In addition to the proper sizing of the parameters of LEDAcrypt so that it withstands the aforemen-
tioned attacks, a last concern should be taken into account regarding the lifetime of a LEDAcrypt
key pair, when keys are not ephemeral. In fact, whenever an attacker may gain access to a decryp-
tion oracle to which he may pose a large amount of queries, the so-called reaction attack becomes
applicable. Reaction attacks recover the secret key by exploiting the inherent non-zero DFR of
QC-LDPC codes [10, 11, 17]. In particular, these attacks exploit the correlation between the DFR
of the code and the supports of the private matrices and the error vector used for encryption.
Indeed, whenever e and H, Q or both of them have pairs of ones placed at the same distance, the
decoder exhibits a DFR smaller than the average.

Such attacks require the collection of the outcome of decoding (success or failure) on a ciphertext for
which the attacker knows the distances in the support of the error vector, for a significant number
of ciphertexts, to achieve statistical confidence in the result. The information on the decoding
status is commonly referred to as the reaction of the decoder, hence the name of the attack. In
the following we briefly recall the work of [10]. The strongest countermeasure against these attacks
is to choose a proper set of system parameters such that the DFR is negligible, which means an
attacker would need an intolerably long time to observe a sufficient amount of decoding failures.

Given a binary vector v of length p, having Ψv = {p0, p1, · · · , pw} as its support, i.e., the set of
positions of v containing a symbol one, we define its distance spectrum DS(v) as:

DS(v) = {min {|pi − pj |, p− |pi − pj |}, pi, pj ∈ Ψv} (2.7)

For a circulant matrix C, the distance spectrum DS(C) is defined as the distance spectrum of
its first row, since all the rows share the same spectrum. Indeed, it can be easily shown that the
cyclic shift of a vector does not change its distance spectrum. As proved in [10], it is possible to
reconstruct a vector v once its distance spectrum and number of set symbols is known.

Reaction attacks against LEDAcrypt can exploit several strategies, as described in [37]. Let us
focus on the j-th circulant block of L, i.e., Lj =

∑n0−1
i=0 HiQij . If the attacker is able to recover

DS(Lj), for some j ∈ [0;n0 − 1], then Lj can be reconstructed and the whole matrix L recovered
from the public key. Then, L = HQ can be used to perform BF decoding over the public code.
Alternatively, the attacker can aim at recovering DS(Hi) and DS(Qij), ∀i ∈ [0;n0 − 1] and for
some j ∈ [0;n0 − 1], in such a way as to reconstruct Lj from the knowledge of H and one column
of Q.

Page 50

LEDAcrypt

In all these attacks, Eve generates a large number of valid plaintext/ciphertext pairs and sends
the ciphertexts to Bob, asking for decryption. Then, the statistical analysis of Bob’s reactions
(in terms of decoding success or failure) is exploited by Eve to recover the distance spectra she
is interested in. When an IND-CCA2 secure conversion is adopted, the error vector used during
encryption cannot be chosen by Eve, and can be seen as a randomly extracted vector among all
the possible

(
n
t

)
n-tuples with weight t. A critical parameter for these attacks is T , which is the

number of collected ciphertexts. In fact, after observing T ciphertexts, the average number of
failures observed by Eve is T ·DFR, which is the basis for her statistical analysis. For LEDAcrypt
instances, we consider that any key pair has a lifetime equal to T = DFR−1, which means allowing
that only one decryption failure is observed by Eve during the whole lifetime of each key pair, on
average.

It has been recently pointed out in [35] that some mechanisms exist to generate error vectors able
to artificially increase the DFR of these systems. However, they start from the observation of at
least one failure, which is unlikely when the original DFR is sufficiently low. In addition, these
methods require the manipulation of error vectors, which is not feasible when an IND-CCA2 secure
conversion is adopted.

2.5.1 Effects on instances with ephemeral keys and accidental key reuse

LEDAcrypt KEM instances with Perfect Forward Secrecy (PFS) and IND-CPA exploit ephemeral
keys that are renewed before each encryption. Hence, any key pair can be used to decrypt one
ciphertext only. In such a case, statistical attacks based on Bob’s reactions are inherently unfeasible
on condition that the ephemeral nature of the keys is strictly preserved.

Reaction attacks could instead be attempted in the case of an accidental reuse of the keys in
these instances. However, as shown in Section 3.1, the parameter choices of LEDAcrypt KEM
instances with ephemeral keys guarantee a DFR in the order of 10−8–10−9. An attacker would
need to collect DFR−1 ciphertexts encrypted with the same key, on average, before observing one
decryption failure. Hence, these instances are protected against an accidental key reuse of significant
length.

2.5.2 Effects on instances with long term keys

LEDAcrypt KEM and LEDAcrypt PKC instances with long term keys employ a suitable conver-
sion to achieve IND-CCA2. The IND-CCA2 model assumes that an attacker is able to create an
unlimited number of chosen ciphertexts and ask for their decryption to a decryption oracle owning
the private key corresponding to the public key used for their generation. Under these assumptions,
reaction attacks become possible, since Eve is able to observe a large number of decryptions related
to the same key pair.

An effective approach to counteract reaction attacks is the use of a suitable conversion of the type
described in Section 1.4.1, which yields a cryptosystem resistant against active attacks (IND-CCA2).
When such a conversion is employed, the attacker is no longer free to choose the error vector used
during encryption, which instead is a function of the encrypted message. Therefore, reaction attacks
cannot be facilitated by choosing suitably forged error vectors that may be able to artificially
increase the system DFR and accelerate the analysis of the distance spectrum of the secret key.

Page 51

LEDAcrypt

A noteworthy point is that the current existing IND-CCA2 constructions require the DFR of the
scheme to be negligible. Indeed, most IND-CCA2 attaining constructions require the underlying
cryptosystem to be correct, i.e., Dsk(Epk(m)) = m, for all valid key pairs (pk, sk) and for all valid
messages m. Recent works [20, 21] tackled the issue of proving a construction IND-CCA2 even in
the case of an underlying cipher affected by decryption failures. The results obtained show that,
in case the DFR is negligible in the security parameter, it is possible for the construction to attain
IND-CCA2 guarantees even in case of decryption failures.

In systems with non-zero DFR, endowed with resistance against an Adaptive Chosen Ciphertext
Attack (CCA2), attacks such as the modification of a ciphertext aimed at inducing the receiver’s
decoder in error are warded off. Therefore, our choice of employing an IND-CCA2 achieving
construction to build both our PKC and KEM, paired with appropriate parameters guaranteeing
a negligible DFR allows us to thwart ciphertext alteration attacks such as the ones pointed out in
the official comments to our proposal during the first round1.

1https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/

official-comments/LEDAkem-official-comment.pdf

Page 52

Chapter 3

LEDAcrypt Parameters

In this chapter we describe an automated procedure for the design of tight and optimal sets of
parameters for the QC-LDPC codes employed in LEDAcrypt. This procedure is available as public
domain software. Concerning the parametrization of the symmetric components involved in the
LEDAcrypt primitives: we chose to employ as a PRNG NIST standard CTR-DRBG instantiated
with AES-256 and lseed equal to 192, 256, and 320 bits for NIST Category 1,3,5 parameters,
respectively. We chose to employ as a cryptographic hash NIST standard SHA-3 with digest length
lhash 256, 384, and 512 bits for NIST category 1,3, and 5 parameters, respectively.

An open source software implementation of the routines for computing the complexity of the de-
scribed attacks is available at https://github.com/ledacrypt. How this procedure can be used
for designing LEDAcrypt instances with ephemeral and long term keys is shown in Sections 3.1
and 3.2, respectively.

The LEDAcrypt design procedure described in this section takes as input the desired security
level λc and λq, expressed as the base-2 logarithm of the number of operations of the desired
computational effort on a classical and quantum computer, respectively. In addition to λc and λq,
the procedure also takes as input the number of circulant blocks, n0 ∈ {2, 3, 4}, forming the parity-
check matrix H, allowing tuning of the code rate. As a third and last parameter, the procedure takes
as input the value of ε, which tunes the system DFR. We first consider instances with ephemeral
keys, which are designed using ε = 0.3: the resulting DFR values are in the range 10−9–10−8. Then,
for instances using long term keys, the system parameters are updated as described in Section 3.2
in order to achieve a smaller DFR.

The parameter design procedure outputs the size of the circulant blocks, p, the weight of a column
of H, dv, the number of intentional errors, t, the weights of the n0 blocks of a row of Q, i.e.,
〈m0,m1, . . . ,mn0−1〉, with

∑n0−1
i=0 mi = m. The procedure enforces the following constraints on the

parameter choice:

• Classical and quantum exhaustive searches for the values of H or Q should require at least 2λc

and 2λq operations. This constraint binds the value of the circulant block p and the weight
of a row of the circulant block, dv for H and mi for Q, to be large enough.

• The minimum cost for a message recovery via ISD on both quantum and classical computers
must exceed 2λq and 2λc operations, respectively. This constraint binds the values of the code

53

LEDAcrypt

length n = n0p, the code dimension k = (n0 − 1)p and the number of errors t to be chosen
such that an ISD on the code C(n, k, t) requires more than 2λq or 2λc operations on a quantum
and a classical computer.

• The minimum cost for a key recovery attack via ISD on both quantum and classical computers
must exceed 2λq and 2λc operations, respectively. This constraint binds the values of the code
length n = n0p, the code redundancy r = p and the number of ones in a row of HQ, d′vn0,
with d′v = dvm to be chosen such that an ISD on the code C(n, r, d′vn0) requires more than
2λq or 2λc operations on a quantum and classical computer.

• The choice of the circulant block size, p, should be such that p is a prime number and such
that ord2(p) = p− 1 (see Theorem 1.1.3).

• The choice of the circulant block size, p, and parity-check matrix density, n0dv, must allow
the code to correct the required amount of errors. This is tested through the computation of
the decoding threshold, as described in the original specification [4].

• The weights of the circulant blocks of Q must guarantee the existence of its multiplicative
inverse according to the criterion defined by Theorem 1.1.4, i.e., the permanent of the matrix
of the block weights must be odd.

We report a synthetic description of the procedure implemented in the publicly available code as
Algorithm 13. The rationale of the procedure1 is to proceed in refining the choice for p, t, dv, and
all the mi’s at fix point, considering only values of p respecting ord2(p) = p− 1.

Since there are cyclic dependencies among the constraints on p, t, dv and m, the search for the
parameter set is structured as a fix point solver iterating on a test on the size of p (lines 2–28).

The loop starts by analyzing the next available prime p extracted from a list of pre-computed values
such that ord2(p) = p− 1, and sorted in ascending order (line 3). The length, n, dimension, k, and
redundancy, r = n − k, of the code are then assigned to obtain a code rate equal to 1 − 1

n0
(line

4). Subsequently, the procedure for the parameter choice proceeds executing a loop (lines 5–7) to
determine a value t, with t < r, such that a message recovery attack on a generic code C(n, k, t)
requires more than the specified amount of computational efforts on both classical and quantum
computers.

To determine the weight of a column of H, i.e., dv and the weight of a column of Q, i.e., m, with
m =

∑n0−1
i=0 mi, the procedure moves on searching for a candidate value of d′v, where d′v = dvm

and d′vn0 is the weight of a row of HQ. Given a value for d′v (line 8 and line 21), the value of dv is
computed as the smallest odd integer greater than the rounded value of the square root of d′v (line
10). The condition of dv being odd is sufficient to guarantee the non singularity of the circulant
blocks of H, while the square root computation is meant to distribute the weight d′v evenly between
the weight of a column of H and the weight of a column of Q. The weight of a column of Q,
i.e., m, is then computed through the loop in lines 11–15. Specifically, the value of m must allow
a partition in n0 integers (i.e., m =

∑n0−1
i=0 mi) such that the permanent of the circulant integer

matrix having the said partition as a row is odd, for the matrix Q to be invertible [4]. Therefore,

in the loop body the value of m is assumed as
⌈
d′v
dv

⌉
(line 13) and subsequently checked to derive

1Note that, in the pseudocode of Algorithm 13, the loop construct while(< condition >) . . . iterates the execution
of instructions in the loop body when the condition is true, while the loop construct Repeat . . .until(< condition >)
iterates the instructions in the loop body when the condition is false.

Page 54

LEDAcrypt

Algorithm 13: LEDAcrypt Parameter Generation
Input: λc, λq :desired security levels against classical and quantum attacks, respectively;

ε: safety margin on the minimum size of a circulant block of the secret parity-check matrix H, named
pth = p(1 + ε), where p is the size of a circulant block, so that the code is expected to correct all the errors
with acceptable DFR;
n0: number of circulant blocks of the p× n0p parity-check matrix H of the code. The Q matrix is constituted
by n0 × n0 circulant blocks as well, each of size p.

Output: p: size of a circulant block; t: number of errors; dv : weight of a column of the parity matrix H;
〈m0,m1, . . . ,mn0−1〉: an integer partition of m, the weight of a row of the matrix Q. Each mi is the weight
of a block of Q.

Data: NextPrime(x): subroutine returning the first prime p larger than the value of the input parameter and such
that ord2(p) = p− 1;
C-ISD-Cost(n, k, t),Q-ISD-Cost(n, k, t): subroutines returning the costs of the fastest ISDs employing a
classical and a quantum computer, respectively;

]Q: number of valid n0p × n0p block circulant matrices,]Q =
(∏

i∈{m0,...,mn0−1}
(p
i

))n0
;

]H: number of valid p × n0p block circulant matrices,]H =
(p
dv

)n0 ;

FindmPartition(m,n0): subroutine returning two values. The former one is a sequence of numbers composed as
the last integer partition of m in n0 addends ordered according to the lexicographic order of the reverse
sequences, i.e., 〈m0,m1, . . . ,mn0−1〉, (this allows to get a sequence of numbers as close as possible among them
and sorted in decreasing order). The latter returned value is a Boolean value PermanentOk which points out if
the partition is legit (true) or not (false).

1 p← 1
2 repeat
3 p← NextPrime(p)
4 n← n0p, k ← (n0 − 1)p, r ← p

5 t← 1

6 while
(
t ≤ r ∧

(
C-ISD-Cost(n, k, t) < 2λc ∨Q-ISD-Cost(n, k, t) < 2λq

))
do

7 t← t+ 1

8 d′v ← 4
9 repeat

10 dv ←
⌊√

d′v

⌋
− 1− (

⌊√
d′v

⌋
mod 2)

11 repeat
12 dv ← dv + 2

13 m←
⌈
d′v
dv

⌉
14 〈m0,m1, · · · ,mn0−1〉, PermanentOk← FindmPartition(m,n0)

15 until PermanentOk = true ∨ (m < n0)
16 if (m > n0) then
17 SecureOk← C-ISD-Cost(n, r, n0d′v) ≥ 2λc ∧Q-ISD-Cost(n, r, n0d′v) ≥ 2λq

18 SecureOk← SecureOk ∧]H ≥ 2λc ∧
√
]H ≥ 2λq ∧]Q ≥ 2λc ∧

√
]Q ≥ 2λq

19 else
20 SecureOk← false
21 d′v ← d′v + 1

22 until (SecureOk = true ∨ d′vn0 ≥ p)
23 if (SecureOk = true) then
24 pth ← BFth(n0,mdv , t)
25 else
26 pth ← p

27 until p > pth(1 + ε)

28 return (p, t, dv ,m, 〈m0,m1, · · · ,mn0−1〉)

the mentioned partition in n0 integers. The loop (lines 11–15) ends when either a valid partition
of m is found or m turns to be smaller than the number of blocks n0 (as finding a partition in this
case would be not possible increasing only the value of dv).

Algorithm 13 proceeds to test for the security of the cryptosystem against key recovery attacks and
key enumeration attacks on both classical and quantum computers (lines 16–18). If a legitimate
value for m has not been found, the current parameters of the cryptoystem are deemed insecure

Page 55

LEDAcrypt

(line 20). In line 21, the current value of d′v is incremented by one and another iteration of the loop is
executed if the security constraints are not met with the current parameters (i.e., SecureOk = false)
and it is still viable to perform another iteration to check the updated value of d′v, i.e., d′vn0 < p
(line 22).

If suitable values for the code parameters from a security standpoint are found, the algorithm
computes the minimum value of p, named pth, such that the decoding algorithm is expected to
correct t errors, according to the methodology reported in [4] (see lines 23–24); otherwise, the value
of pth is forced to be equal to p (lines 25–26) in such a way that another iteration of the outer loop
of Algorithm 13 is executed through picking a larger value of p and new values for the remaining
parameters.

We note that, while the decoding threshold provides a sensible estimate of the fact that the
QC-LDPC code employing the generated parameters will correct the computed amount of errors,
this is no substitute for a practical DFR evaluation, which is then performed through Montecarlo
simulations. Willing to target a DFR of 10−9, we enlarged heuristically the value of p until the
target DFR was reached (in steps of 5% of the value found by the tool). The enlargement took
place for:

• Category 1: n0 = 2: 6 times, n0 = 3: 1 time, n0 = 4: 1 time

• Category 3: n0 = 2: 4 times, n0 = 3: 0 times, n0 = 4: 0 times

• Category 5: n0 = 2: 0 times, n0 = 3: 0 times, n0 = 4: 0 times.

The C++ tool provided follows the computation logic described in Algorithm 13, but it is optimized
to reduce the computational effort as follows:

• The search for the values of t and d′v respecting the constraints is performed by means of a
dichotomic search instead of a linear scan of the range.

• The computations of the binomial coefficients employ a tunable memorized table to avoid
repeated re-computation, plus a switch to Stirling’s approximation (considering the approx-
imation up to the fourth term of the series) only in the case where the value of

(
a
b

)
is not

available in the table and b > 9. In case the value of the binomial is not available in the table
and b < 9 the result is computed with the iterative formula for the binomial, to avoid the
discrepancies between Stirling’s approximation and the actual value for small values of b.

• The values of p respecting the constraint ord2(p) = p − 1 are pre-computed up to 119, 981
and stored in a lookup table.

• The search for the value of p is not performed scanning linearly the aforementioned table. The
strategy to find the desired p starts by setting the value of the candidate for the next iteration
to NextPrime(d(1 + ε)pthe) up to finding a value of p, p̄ which satisfies the constraints.
Subsequently the algorithm starts scanning the list of primes linearly from p̄ backwards to
find the smallest prime which satisfies the constraints.

The C++ tool relies on Victor Shoup’s NTL library (available at https://www.shoup.net/ntl/),
in particular for the arbitrary precision integer computations and the tunable precision floating
point computations, and requires a compiler supporting the C++11 standard.

Page 56

LEDAcrypt

Table 3.1: Parameter sizes for LEDAcrypt instances with ephemeral keys, obtained with the auto-
mated parameter design tool.

NIST n0 p t dv m errors out of
Cat. decodes

1
2 14, 939 136 11 [4, 3] 14 out of 1.2 · 109

3 7, 853 86 9 [4, 3, 2] 0 out of 1 · 109

4 7, 547 69 13 [2, 2, 2, 1] 0 out of 1 · 109

3
2 25, 693 199 13 [5, 3] 2 out of 1 · 109

3 16, 067 127 11 [4, 4, 3] 0 out of 1 · 109

4 14, 341 101 15 [3, 2, 2, 2] 0 out of 1 · 109

5
2 36, 877 267 11 [7, 6] 0 out of 1 · 109

3 27, 437 169 15 [4, 4, 3] 0 out of 1 · 109

4 22, 691 134 13 [4, 3, 3, 3] 0 out of 1 · 109

Table 3.2: Computational cost of an exhaustive enumeration attack on either the matrix H or the
matrix Q. The quantum execution model considers the possibility of attaining the full speedup
yielded by the application of Grover’s algorithm to the computation.

NIST H Enumeration cost Q enumeration cost
Cat. n0 (log2]binary op.s) (log2]quantum gates)

Classical Quantum Classical Quantum

1
2 254.55 127.27 179.79 89.89
3 295.93 147.96 326.84 163.42
4 539.64 269.82 348.68 174.34

3
2 315.79 157.89 247.34 123.67
3 385.30 192.65 425.80 212.90
4 667.42 333.71 474.74 237.37

5
2 283.24 145.62 350.84 175.42
3 542.70 271.35 451.27 225.63
4 622.26 311.13 703.06 351.53

3.1 Parameters for LEDAcrypt instances with ephemeral keys

In Table 3.1 we provide parameters for LEDAcrypt KEM instances employing ephemeral keys. De-
riving them took approximately a day for all the parameter sets with n0 ∈ {3, 4} and approximately
a month for all the parameter sets with n0 = 2 on a dual socket AMD EPYC 7551 32-Core CPU.
The memory footprint for each parameter seeking process was below 100 MiB.

3.1.1 Resulting computational complexity of attacks

When an algorithmic procedure is exploited for the design of parameter sets, as in our case, some
constraints on the choice of the row/column weights of H and Q must be imposed in such a way as to
make enumeration of either H or Q unfeasible to an attacker. Therefore, enumeration attacks of the

Page 57

LEDAcrypt

Table 3.3: Cost of performing a message recovery attack, i.e., an ISD on the code C(n0p, (n0−1)p, t),
for LEDAcrypt instances with the parameters p, t reported in Table 3.1, employing the considered
ISD variants.

NIST Classical computer Quantum computer
Cat. n0 (log2]binary op.s) (log2]quantum gates)

Prange [36] L-B [26] Leon [27] Stern [41] F-S [12] BJMM [6] Q-LB [9] Q-Stern [9]

1
2 169.05 158.23 156.35 148.59 148.57 144.37 97.26 98.67
3 167.72 157.37 154.51 147.67 147.65 144.29 96.14 97.55
4 169.62 159.40 155.86 149.32 149.31 145.98 97.47 98.22

3
2 234.11 222.19 220.26 210.42 210.41 207.17 130.22 131.62
3 235.32 223.84 220.82 211.91 211.90 208.71 130.67 132.07
4 235.98 224.66 220.97 212.39 212.39 209.10 131.26 132.66

5
2 303.56 290.79 288.84 277.40 277.39 274.54 165.18 166.58
3 303.84 291.53 288.42 277.98 277.98 274.34 165.48 166.88
4 303.68 291.54 287.78 277.67 277.67 274.91 165.52 166.92

type described in Section 2.3 must be taken into account. In Table 3.2 we report the computational
cost of performing such an exhaustive enumeration, both with a classical and a quantum computer.
The latter has been obtained by applying the speedup due to Grover’s algorithm to the complexity
computed considering a classical computer. From the results in Table 3.2 it is straightforward to
note that an exhaustive search on either H or Q is clearly above the required computational effort.

Then, as described in Section 2.4.1, the two main attacks that can be mounted against the con-
sidered systems are message recovery attacks and key recovery attacks based on ISD algorithms.
Table 3.3 and Table 3.4 report the complexity of these attacks against LEDAcrypt instances em-
ploying the parameters p, t in Table 3.1. An interesting point to be noted is that, while providing
clear asymptotic speedups, the improvements to the ISD algorithms proposed since Stern’s [41] are
only able to achieve a speedup between 22 and 24 when their finite regime complexities are consid-
ered in the range of values concerning LEDAcrypt cryptosystem parameters. Concerning quantum
ISD, it is interesting to notice that the quantum variant of the Stern’s algorithm as described by de
Vries [9] does not achieve an effective speedup when compared against a quantum transposition of
Lee and Brickell’s ISD. Such a result can be ascribed to the fact that the speedup obtained by the
reduction in the number of ISD iterations which can be obtained by Stern’s ISD is mitigated by
the fact that the overall number of iterations to run is quadratically reduced by applying Grover’s
algorithm to execute them.

Comparing the computational complexities of the message recovery attack (Table 3.3) and the key
recovery attack (Table 3.4), we note that performing a message recovery attack is almost always
easier than the corresponding key recovery attack on the same parameter set, albeit by a small
margin.

Page 58

LEDAcrypt

Table 3.4: Cost of performing a key recovery attack, i.e., an ISD on the code C(n0p, p, n0dvm), for
the revised values of the parameters p, n0, dv,m reported in Table 3.1, employing the considered
ISD variants

NIST Classical computer Quantum computer
Cat. n0 (log2]binary op.s) (log2]quantum gates)

Prange [36] L-B [26] Leon [27] Stern [41] F-S [12] BJMM [6] Q-LB [9] Q-Stern [9]

1
2 180.25 169.06 167.24 158.76 158.75 154.94 99.21 100.62
3 169.36 157.78 156.53 147.71 147.68 144.08 93.93 95.34
4 179.86 167.79 165.69 157.13 157.10 153.01 99.71 101.12

3
2 237.85 225.77 223.87 213.72 213.71 210.64 128.35 129.75
3 241.70 228.98 227.03 216.59 216.57 213.18 130.56 131.96
4 254.92 241.73 238.97 228.80 228.78 224.76 137.60 139.01

5
2 315.08 302.11 300.19 288.35 288.34 285.71 167.04 168.44
3 320.55 306.93 304.48 292.78 292.77 289.00 170.31 171.71
4 312.68 298.84 295.66 284.59 284.58 280.91 166.82 168.22

3.2 Parameters for LEDAcrypt instances with long term keys

For LEDAcrypt instances employing long term keys, we need that the DFR is sufficiently small
to enable IND-CCA2. However, such small values of DFR cannot be assessed through Montecarlo
simulations. Hence, for these instances we consider a Q-decoder performing two iterations and
exploit the analysis reported in Section 1.6 in order to characterize its DFR.

To this end, we first employ an additional rejection sampling in the key generation phase, in order
to ensure that the generated key pair can achieve, in the second decoder iteration, correction of
all residual errors of weight ≤ t̄, where t̄ is a properly chosen integer. Such a property can be
obtained only after having tested the generated matrix L, since it must be such that the inequality
µ(t̄) + µ(t̄− 1) < mdv is satisfied (recall Equation (1.32)). For this purpose, during key generation
each key pair is tested, by computing its characteristic values of µ(t̄) and µ(¯t− 1). If the above
condition is not satisfied the generated key pair is discarded, and the procedure is repeated until
a valid key pair is picked. For valid key pairs, achieving a desired target DFR value, DFR, is
guaranteed by the choice of code parameters such that the first iteration of the Q-decoder results
in at most t̄ residual errors with probability > 1−DFR.

Given a chosen target DFR and a set of parameters for a LEDAcrypt instance, we are able to
evaluate the amount of secret keys which allow achieving the desired DFR target. Such a procedure
is integrated in the key generation process for LEDAcrypt instances with long term keys, where
the concern on the DFR is actually meaningful, as opposed to instances with ephemeral key pairs.

Some choices are reported in Table 3.5, by imposing a DFR smaller than 2−64 and 2−λ, where λ
equals 128, 192, 256 for NIST Category 1, 3, 5, respectively. The proposed choices aim at parameter
sets for which the probability of drawing a random secret key achieving the DFR target is significant.
For designing these parameters, we start from the ones obtained through the automated parameter
optimization procedure used for instances with ephemeral keys previously described, and keep the
product mdv constant or slightly increased. Then, we proceed by increasing the size of the circulant
blocks, until we obtain a probability smaller than the given target that the number of bit errors

Page 59

LEDAcrypt

that are left uncorrected by the first iteration is ≤ t̄. In particular, such a probability is computed
by considering all possible choices for the flipping threshold of the first iteration, and by taking the
optimal one (i.e., the one corresponding to the maximum value of the probability).

For any set of parameters so designed, we draw 100 key pairs at random, and evaluate how many
of them satisfy the inequality µ(t̄) +µ(t̄− 1) < mdv. As it can be seen from the results reported in
Table 3.5, the parameter sets we determined are able to achieve a DFR < 2−64 increasing the code
size by a factor ranging from 2× to 3× with respect to the case of ephemeral key pairs.

The obtained LEDAcrypt parameterizations show that it is possible to achieve the desired DFR
discarding an acceptable number of key pairs, given proper tuning of the parameters. The pa-
rameter derivation procedure for these LEDAcrypt instances can also be automated, which could
be advantageous in terms of flexibility in finding optimal parameters for a given code size or key
rejection rate.

Table 3.5: Parameters for the LEDAcrypt KEM-LT and the LEDAcrypt PKC employing a two-
iteration Q-decoder matching a DFR equal to 2−64 and a DFR equal to 2−λ, where λ equals 128,
192, 256 for NIST Category 1, 3, 5, respectively

NIST
n0 DFR p t dv m t̄

No. of keys out of 100
b0Category providing the guaranteed DFR

1
2 2−64 35, 899 136 9 [5, 4] 4 95 44
2 2−128 52, 147 136 9 [5, 4] 4 95 43

3
2 2−64 57, 899 199 11 [6, 5] 5 92 64
2 2−192 96, 221 199 11 [6, 5] 5 92 64

5
2 2−64 89, 051 267 13 [7, 6] 6 93 89
2 2−256 152, 267 267 13 [7, 6] 6 93 88

Page 60

Chapter 4

Performance of the LEDAcrypt
primitives

4.1 Performance of the LEDAcrypt primitives

Willing to provide a preliminary gauge of the performance and key size improvements obtained from
the new parameter sets proposed in this document, we report the results of the execution of both
LEDAcrypt KEM and LEDAcrypt PKC employing the parameter sets presented in Table 3.1. The
results provided in the following are obtained with a codebase exploiting the availability of compiler
intrinsics to employ the AVX2 extended instruction set provided by x86 64 CPUs. The implemen-
tations provided in the Optimized Implementation folder automatically enable the intrinsics-based
code in case the presence of an AVX2 endowed CPU is suggested by the gcc compiler via auto-
matically defined macros. The optimized codebase falls back to a C implementation for the sake of
compatibility in case the AVX2 instruction set extensions are not available.

Table 4.1 reports the running times of the ephemeral key exchange primitive. The execution time of
the ephemeraly key exchange is dominated by the time taken to perform the multiplicative inverse
during key generation time and the decoder computation at decryption time. The encryption
primitive is significantly fast, allowing around 25k encryptions per second for NIST Category 1
parameters on our platform. The total execution time of a KEM is between 1 and 2 ms, for NIST
Category 1, which is a fraction of the latency of the typical network communication.

Table 4.2 reports the size of the key pairs and encapsulated secrets with our ephemeral KEM. We
note that the minimum total transmitted size is achieved for NIST Category 1 and n0 = 3 with
3120B, while the smallest encapsulated secret is slightly less than 1 kB.

Table 4.3 reports the running time of the instances of LEDAcrypt KEM with parameters providing
negligible DFR. In particular we selected a 2−64 level to match the number of queries allowed to
an attacker, and a DFR such that obtaining a decoding failure requires the same amount of effort
of randomly guessing the secret key. The encapsulation and decapsulation timings are significantly
smaller than the key generation due to the impact of the rejection sampling procedure validating
the DFR for the selected key pair. We note that the current implementation of the said rejection
sampling strategy is not exploiting the circulant properties of the Γ matrix on which it acts, and
therefore is amenable to significant speedups. Indeed, the remaining portion of the key generation

61

LEDAcrypt

Table 4.1: LEDAcrypt KEM with ephemeral keys – Running times for key generation, key en-
capsulation and key decapsulation, followed by the total time needed for a key exchange without
considering transmission times as a function of the NIST category and the number of circulant
blocks n0 on an Intel Skylake i5-6600 at 3.6 GHz.
The figures are taken employing the completely portable reference implementation in ISO C11,
compiled with GCC 6.3.0, employing -march=native -O3 as optimization parameters

NIST
n0

KeyGen Encap. Decap. Total exec.
Category (ms) (ms) (ms) time (ms)

1
2 1.374 (± 0.130) 0.046 (± 0.009) 0.340 (± 0.072) 1.759
3 0.569 (± 0.089) 0.038 (± 0.012) 0.424 (± 0.057) 1.031
4 0.884 (± 0.510) 0.043 (± 0.006) 1.305 (± 0.136) 2.233

3
2 3.725 (± 0.188) 0.092 (± 0.018) 0.950 (± 0.103) 4.768
3 1.793 (± 0.271) 0.088 (± 0.023) 1.112 (± 0.075) 2.992
4 2.759 (± 1.170) 0.112 (± 0.014) 2.065 (± 0.176) 4.936

5
2 7.644 (± 0.261) 0.176 (± 0.022) 1.276 (± 0.105) 9.095
3 4.964 (± 0.602) 0.177 (± 0.013) 1.623 (± 0.122) 6.764
4 5.649 (± 1.846) 0.217 (± 0.018) 2.752 (± 0.176) 8.618

Table 4.2: LEDAcrypt KEM with ephemeral keys – Sizes in bytes of the key pair (at rest and in
memory), of the encapsulated secret and of the shared secret, as a function of the NIST category
and the number of circulant blocks n0

NIST
n0

Private key (B) Public key Encapsulated Shared
Category At rest In memory (B) secret size (B) secret size (B)

1
2 24 452 1,872 1,872 32
3 24 540 2,080 1,040 32
4 24 684 2,832 944 32

3
2 32 644 3,216 3,216 48
3 32 748 4,032 2,016 48
4 32 924 5,400 1,800 48

5
2 40 764 4,616 4,616 64
3 40 972 6,864 3,432 64
4 40 1,092 8,520 2,840 64

procedure accounts for less than 1% of its total time. The encapsulation and decapsulation timings
can be further reduced changing the polynomial multiplication strategy from the current Toom-
Cook with 3 limbs to a Toom-Cook with 4 limbs, and improving the vectorization of the decoder,
respectively. Table 4.4 reports the size of the key pairs of LEDAcrypt KEM-LT, showing that,
for NIST Category 1, the public key size does not exceed 4.5 kB, thus representing a reasonable
overhead in most message transmissions. The size of the private key at rest takes into account the
storage of the secret DRBG seed plus a 8 bit wide counter of the number of rejections which took
place during key generation, so that the corresponding tests can be skipped at decryption time,
when the private key is regenerated starting from the DRBG seed.

Finally, Tables 4.5 and 4.6 report the running times and keysizes of LEDAcrypt PKC. A noteworthy
point is that the minimum ciphertext overhead is around the size of the public key of the scheme

Page 62

LEDAcrypt

itself. Such a feature is achieved thanks to the Kobara-Imai-γ construction which allows to encrypt
a portion of the plaintext within the asymmetric cipher payload, instead of encapsulating just a
session key.

Table 4.3: LEDAcrypt KEM-LT – Running times for key generation, encap. and decaps.
Execution times on an Intel Skylake i5-6600 at 3.6 GHz are reported as a function of the NIST cat-
egory and of the decryption failure rate provided by the choice of the parameters of the underlying
QC-LDPC code.
The figures are taken employing the completely portable reference implementation in ISO C11,
compiled with GCC 6.3.0, employing -march=native -O3 as optimization parameters

NIST
n0 DFR

KeyGen Encapsulation Decapsulation
Category (s) (ms) (ms)

1
2 2−64 0.295 (± 0.003) 0.132 (± 0.004) 0.417 (± 0.048)
2 2−128 0.549 (± 0.228) 0.163 (± 0.004) 0.549 (± 0.029)

3
2 2−64 0.906 (± 0.007) 0.259 (± 0.005) 0.911 (± 0.180)
2 2−192 1.532 (± 0.082) 0.540 (± 0.007) 1.248 (± 0.155)

5
2 2−64 2.521 (± 0.069) 0.685 (± 0.144) 1.411 (± 0.043)
2 2−256 4.252 (± 0.114) 0.845 (± 0.022) 2.284 (± 0.194)

Table 4.4: LEDAcrypt KEM-LT – Sizes in bytes of the key pair, of the encapsulated secret and of
the shared secret, as a function of the NIST category and of the decryption failure rate provided
by the choice of the parameters of the underlying QC-LDPC code.

NIST
n0 DFR

Private key (B) Public key Encapsulated Shared
Category At rest In memory (B) secret size (B) secret size (B)

1
2 2−64 25 468 4,488 4,488 32
2 2−128 25 468 6,520 6,520 32

3
2 2−64 33 660 7,240 7,240 48
2 2−192 33 660 12,032 12,032 48

5
2 2−64 41 884 11,136 11,136 64
2 2−256 41 884 19,040 19,040 64

Page 63

LEDAcrypt

Table 4.5: LEDAcrypt PKC – Running times for key generation, encryption and decryption as-
suming a plaintext message to be encrypted with size 1KiB.
Execution times on an Intel Skylake i5-6600 at 3.6 GHz are reported as a function of the NIST cat-
egory and of the decryption failure rate provided by the choice of the parameters of the underlying
QC-LDPC code.
The figures are taken employing the completely portable reference implementation in ISO C11,
compiled with GCC 6.3.0, employing -march=native -O3 as optimization parameters

NIST
n0 DFR

KeyGen Encryption Decryption
Category (s) (ms) (ms)

1
2 2−64 0.290 (± 0.008) 0.29 (± 0.00) 0.76 (± 0.00)
2 2−128 0.422 (± 0.014) 0.42 (± 0.03) 1.18 (± 0.12)

3
2 2−64 1.187 (± 0.483) 0.56 (± 0.11) 1.70 (± 0.21)
2 2−192 1.538 (± 0.043) 1.10 (± 0.11) 2.39 (± 0.07)

5
2 2−64 2.543 (± 0.037) 1.02 (± 0.09) 3.26 (± 0.44)
2 2−256 4.240 (± 0.069) 1.53 (± 0.07) 4.16 (± 0.09)

Table 4.6: LEDAcrypt PKC – Sizes in bytes of the key pair, and the minimum and maximum
ciphertext expansion overhead, as a function of the NIST category and of the decryption failure
rate provided by the choice of the parameters of the underlying QC-LDPC code

NIST
n0 DFR

Private key (B) Public key Min. ciphertext Max. ciphertext
Category At rest In memory (B) overhead (B) overhead (B)

1
2 2−64 25 468 4,488 4,521 8,976
2 2−128 25 468 6,520 6,554 13,040

3
2 2−64 33 660 7,240 7,283 14,480
2 2−192 33 660 12,032 12,077 24,064

5
2 2−64 41 884 11,136 11,189 22,272
2 2−256 41 884 19,040 19,095 38,080

Page 64

LEDAcrypt

4.2 Known Answer Test values

Known answer tests generated for 100 runs of LEDAcrypt KEM with ephemeral keys can be found
in the KAT directory of the submission package. The naming convention of the req/rsp file pairs is
the following:

PQCkemKAT <private key size> <value of the n0 parameter>.req

PQCkemKAT <private key size> <value of the n0 parameter>.rsp

Known answer tests generated for 10 runs of LEDAcrypt KEM with long term keys can be found
in the KAT directory of the submission package. The naming convention of the req/rsp file pairs is
the following:

PQCkem-LT-KAT <private key size> <DFR equal to SL>.req

PQCkem-LT-KAT <private key size> <DFR equal to SL>.rsp

where DFR equal to SL is set to 0 for the parameter sets with a DFR of 2−64, and to 1 for the
other parameter sets.

Known answer tests generated for 10 runs of LEDAcrypt PKC can be found in the KAT directory
of the submission package. The naming convention of the req/rsp file pairs is the following:

PQCencryptKAT <private key size> <DFR equal to SL>.req

PQCencryptKAT <private key size> <DFR equal to SL>.rsp

where DFR equal to SL is set to 0 for the parameter sets with a DFR of 2−64, and to 1 for the
other parameter sets.

Page 65

Chapter 5

Summary of advantages and
limitations

+ Built on an NP-complete problem under reasonable assumptions.

− Exposes a public Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) code obtained
as the combination of a secret QC-LDPC code with a secret transformation matrix (Q), and
this yields additional structure with respect to randomly generated QC-MDPC codes.

+ Rejection sampling is adopted to guarantee that the said additional structure does not intro-
duce any polarization in the generation of keys.

+ The said additional structure allows using new decoders (Q-decoders) that are significantly
faster than classic bit flipping decoders.

+ Compact key pairs (below 23 kiB at most), minimum size private keys.

+ Decoders with further improved and theoretically foreseeable performance could be developed.

+ Requires only addition and multiplication over F2[x] (modular inverse over F2[x]/〈xp+1〉 can
be avoided), besides single-precision integer operations.

+ Fully patent free, self contained, public domain codebase written in ANSI-C11.

+ Easy to integrate in existing cryptographic libraries.

+ Particularly efficient to apply countermeasures against non-profiled power consumption and
electromagnetic emissions side channel attacks.

66

Bibliography

[1] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, C. Miller, D. Moody, R. Peralta,
R. Perlner, A. Robinson, D. Smith-Tone, and Y.-K. Liu, “Status report on the first round of the
NIST post-quantum cryptography standardization process,” National Institute of Standards
and Technology, Tech. Rep. NISTIR 8240, Jan. 2019.

[2] M. Baldi and F. Chiaraluce, “Cryptanalysis of a new instance of McEliece cryptosystem based
on QC-LDPC codes,” in Proc. IEEE International Symposium on Information Theory (ISIT
2007), Nice, France, Jun. 2007, pp. 2591–2595.

[3] M. Baldi, QC-LDPC Code-Based Cryptography, ser. SpringerBriefs in Electrical and Computer
Engineering. Springer International Publishing, 2014.

[4] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “LEDAkem and LEDApkc
website,” https://www.ledacrypt.org/.

[5] M. Baldi, M. Bianchi, and F. Chiaraluce, “Security and complexity of the McEliece cryptosys-
tem based on QC-LDPC codes,” IET Information Security, vol. 7, no. 3, pp. 212–220, Sep.
2012.

[6] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random binary linear codes in 2n/20:
How 1 + 1 = 0 improves information set decoding,” in Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, 2012, pp. 520–536.

[7] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability of certain
coding problems,” IEEE Trans. Information Theory, vol. 24, no. 3, pp. 384–386, May 1978.

[8] E. Bernstein and U. V. Vazirani, “Quantum complexity theory,” SIAM J. Comput., vol. 26,
no. 5, pp. 1411–1473, Oct. 1997.

[9] S. de Vries, “Achieving 128-bit security against quantum attacks in OpenVPN,” Master’s
thesis, University of Twente, Aug. 2016. [Online]. Available: http://essay.utwente.nl/70677/

[10] T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and T. Johansson, “A reaction attack
on the QC-LDPC McEliece cryptosystem,” in Post-Quantum Cryptography: 8th International
Workshop, PQCrypto 2017, T. Lange and T. Takagi, Eds. Utrecht, The Netherlands: Springer
International Publishing, Jun. 2017, pp. 51–68.

[11] T. Fabsic, V. Hromada, and P. Zajac, “A reaction attack on LEDApkc,” Cryptology ePrint
Archive, Report 2018/140, 2018, https://eprint.iacr.org/2018/140.

[12] M. Finiasz and N. Sendrier, “Security bounds for the design of code-based cryptosystems,”
in Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, 2009, pp. 88–105.

67

LEDAcrypt

[13] R. G. Gallager, Low-Density Parity-Check Codes. M.I.T. Press, 1963.

[14] S. W. Golomb, “Run-length encodings,” IEEE Trans. Information Theory, vol. 12, no. 3, pp.
399–401, 1966. [Online]. Available: https://doi.org/10.1109/TIT.1966.1053907

[15] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying Grover’s Algorithm
to AES: Quantum Resource Estimates,” in Post-Quantum Cryptography - 7th International
Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, 2016, pp.
29–43.

[16] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proc. 28th Annual
ACM Symposium on the Theory of Computing, Philadephia, PA, May 1996, pp. 212–219.

[17] Q. Guo, T. Johansson, and P. Stankovski Wagner, “A key recovery reaction attack on QC-
MDPC,” IEEE Trans. Information Theory, vol. 65, no. 3, pp. 1845–1861, Mar. 2019.

[18] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on MDPC with CCA security
using decoding errors,” in Advances in Cryptology – ASIACRYPT 2016, ser. Lecture Notes in
Computer Science, J. H. Cheon and T. Takagi, Eds. Springer Berlin Heidelberg, 2016, vol.
10031, pp. 789–815.

[19] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the Fujisaki-Okamoto
transformation,” in Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, ser. Lecture Notes in
Computer Science, Y. Kalai and L. Reyzin, Eds., vol. 10677. Springer, 2017, pp. 341–371.
[Online]. Available: https://doi.org/10.1007/978-3-319-70500-2\ 12

[20] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma, “IND-CCA-secure key encapsulation
mechanism in the quantum random oracle model, revisited,” in Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part III, ser. Lecture Notes in Computer Science,
H. Shacham and A. Boldyreva, Eds., vol. 10993. Springer, 2018, pp. 96–125. [Online].
Available: https://doi.org/10.1007/978-3-319-96878-0\ 4

[21] H. Jiang, Z. Zhang, and Z. Ma, “Tighter security proofs for generic key encapsulation mecha-
nism in the quantum random oracle model,” Cryptology ePrint Archive, Report 2019/134, to
appear in PQCrypto 2019, 2019, https://eprint.iacr.org/2019/134.

[22] G. Kachigar and J. Tillich, “Quantum information set decoding algorithms,” in Post-Quantum
Cryptography - 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June
26-28, 2017, Proceedings, 2017, pp. 69–89.

[23] D. E. Knuth, The Art of Computer Programming: Generating All Combinations and Parti-
tions, 1st ed. Addison-Wesley, 2005, vol. 4.

[24] K. Kobara, “Code-based public-key cryptosystems and their applications,” in Information
Theoretic Security, ser. Lecture Notes in Computer Science. Springer Verlag, 2010, vol. 5973,
pp. 45–55.

[25] K. Kobara and H. Imai, “Semantically secure McEliece public-key cryptosystems —
conversions for McEliece PKC,” Lecture Notes in Computer Science, vol. 1992, pp. 19–35,
2001. [Online]. Available: citeseer.ist.psu.edu/kobara01semantically.html

[26] P. J. Lee and E. F. Brickell, “An observation on the security of McEliece’s public-key cryp-
tosystem,” in Advances in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Ap-
plication of of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings,
1988, pp. 275–280.

Page 68

LEDAcrypt

[27] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large error-correcting
codes,” IEEE Trans. Information Theory, vol. 34, no. 5, pp. 1354–1359, 1988.

[28] Y. X. Li, R. Deng, and X. M. Wang, “On the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems,” IEEE Trans. Information Theory, vol. 40, no. 1, pp. 271–273, Jan.
1994.

[29] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved low-density parity-
check codes using irregular graphs,” IEEE Trans. Information Theory, vol. 47, no. 2, pp.
585–598, Feb. 2001.

[30] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes in Õ(20.054n),” in Ad-
vances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings, 2011, pp. 107–124.

[31] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory.” DSN Progress
Report, pp. 114–116, 1978.

[32] National Institute of Standards and Technology. (2016, Dec.) Post-quantum crypto project.
[Online]. Available: http://csrc.nist.gov/groups/ST/post-quantum-crypto/

[33] ——. (2018) Post-quantum cryptography - round 1 submissions. [Online]. Available:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

[34] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Probl. Contr.
and Inform. Theory, vol. 15, pp. 159–166, 1986.

[35] A. Nilsson, T. Johansson, and P. Stankovski Wagner, “Error amplification in code-
based cryptography,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2019, no. 1, pp. 238–258, nov 2018. [Online]. Available: https:
//tches.iacr.org/index.php/TCHES/article/view/7340

[36] E. Prange, “The use of information sets in decoding cyclic codes,” IRE Trans. Information
Theory, vol. 8, no. 5, pp. 5–9, 1962.

[37] P. Santini, M. Baldi, and F. Chiaraluce, “Assessing and countering reaction attacks against
post-quantum public-key cryptosystems based on QC-LDPC codes,” in Cryptology and Net-
work Security, ser. Lecture Notes in Computer Science, J. Camenisch and P. Papadimitratos,
Eds., vol. 11124. Cham: Springer International Publishing, 2018, pp. 323–343.

[38] N. Sendrier, “Encoding information into constant weight words,” in Proceedings. International
Symposium on Information Theory, 2005 (ISIT 2005), Sep. 2005, pp. 435–438.

[39] ——, “Decoding one out of many,” in Post-Quantum Cryptography - 4th International Work-
shop, PQCrypto 2011, Taipei, Taiwan, November 29 - December 2, 2011. Proceedings, 2011,
pp. 51–67.

[40] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, Oct. 1997.

[41] J. Stern, “A method for finding codewords of small weight,” in Coding Theory and Applications,
3rd International Colloquium, Toulon, France, November 2-4, 1988, Proceedings, 1988, pp.
106–113.

[42] R. Townsend and E. J. Weldon, “Self-orthogonal quasi-cyclic codes,” IEEE Trans. Information
Theory, vol. 13, no. 2, pp. 183–195, Apr. 1967.

Page 69

LEDAcrypt

[43] R. Ueno, S. Morioka, N. Homma, and T. Aoki, “A high throughput/gate AES hardware
architecture by compressing encryption and decryption datapaths - Toward efficient CBC-
mode implementation,” in Cryptographic Hardware and Embedded Systems - CHES 2016 -
18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
2016, pp. 538–558.

[44] C. Xing and S. Ling, Coding Theory: A First Course. New York, NY, USA: Cambridge
University Press, 2003.

Page 70

Appendix A

Estimate of the rejection rate

We here provide a theoretical estimate of the number of keys that get discarded due to rejection
sampling that is performed during key generation in order to ensure that the obtained matrix L
has full weight.

First of all, we define Pr⊕(p, v1, v2, vx) as the probability that the sum of two random length-p
vectors with weights v1 and v2 results in a vector with weight vx; we have

Pr⊕(p, v1, v2, vx) =

(

v1
v1+v2−vx

2
)(

p−v1
v2−

v1+v2−vx
2

)

(pv2)
, if

{
max{v1, v2} −min{v1, v2} ≤ vx ≤ v1 + v2,

vx mod 2 = v1 + v2 mod 2,

0, otherwise.

(A.1)

Let Pr
(N)
⊕ (p, v, vx) be the probability that the sum of N random length-p vectors with weight v

results in a vector with weight vx. This probability can be recursively defined as

P
(N)
⊕ (p, v, vx)

{

0 if v(0) 6= v,

1 if v(0) = v,
for N = 1,∑p

v(N−1)=0
P

(N−1)
⊕ (p, v, v(N−1))P⊕(p, v, v(N−1), vx), for N ≥ 2.

(A.2)

The above probabilities can be used to estimate the row weight distribution of L. First of all, we
remind that each circulant block Li in L, for i = 0, 1, · · · , n0−1, is obtained as Li =

∑n0−1
j=0 HjQj,i.

We also remind that all the blocks Hi have row and column weight dv, while each block Qj,i has row
and column weight mj,i. Each product HiQj,i can be described as the sum of mj,i random circulant
blocks with row weight dv, and thus its weight distribution can be estimated through Eq. (A.2),

with N = mj,i and v = dv. The weight distribution of Li can then be computed as P
(n0−1)
i (vx),

where the function Pi is defined through the following recursive expression

P
(j)
i (vx) =

{
P

(m0,i)
⊕ (p, dv, vx), if j = 0,∑p
vx=0

∑p
v1=0

∑p
v2=0 P

(j−1)
i (v1)P

(mj,i)
⊕ (p, dv, v2)P⊕(p, v1, v2, vx), otherwise.

(A.3)

We finally obtain the weight distribution of a row of L as

PL(wx) =

n0−1∏
i=0

P
(n0−1)
i (vi), ∀v0, · · · , vn0−1 s.t.

n0−1∑
i=0

vi = wx. (A.4)

71

LEDAcrypt

The rejection rate is hence estimated as

η = 1− PL(n0mdv). (A.5)

Page 72

Statements

Statement by Each Submitter

I, Marco Baldi, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, ref-
erence implementation, or optimized implementations that I have submitted, known as LEDAcrypt,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAcrypt.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

LEDAcrypt

Date:

Place:

Page 74

Statement by Reference/Optimized Implementations’ Owner(s)

I, Marco Baldi, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted ref-
erence implementation and optimized implementations and hereby grant the U.S. Government and
any interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected for stan-
dardization and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Alessandro Barenghi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, do hereby declare that the
cryptosystem, reference implementation, or optimized implementations that I have submitted, known
as LEDAcrypt, is my own original work, or if submitted jointly with others, is the original work
of the joint submitters. I further declare that I do not hold and do not intend to hold any patent
or patent application with a claim which may cover the cryptosystem, reference implementation, or
optimized implementations that I have submitted, known as LEDAcrypt.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Alessandro Barenghi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, am one of the owners of
the submitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based upon,
distribute copies of, and display such implementations for the purposes of the post-quantum algo-
rithm public review and evaluation process, and implementation if the corresponding cryptosystem
is selected for standardization and as a standard, notwithstanding that the implementations may be
copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Franco Chiaraluce, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, ref-
erence implementation, or optimized implementations that I have submitted, known as LEDAcrypt,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAcrypt.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Franco Chiaraluce, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted ref-
erence implementation and optimized implementations and hereby grant the U.S. Government and
any interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected for stan-
dardization and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Gerardo Pelosi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingeg-
neria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, do hereby declare that the cryptosys-
tem, reference implementation, or optimized implementations that I have submitted, known as
LEDAcrypt, is my own original work, or if submitted jointly with others, is the original work
of the joint submitters. I further declare that I do not hold and do not intend to hold any patent
or patent application with a claim which may cover the cryptosystem, reference implementation, or
optimized implementations that I have submitted, known as LEDAcrypt.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Gerardo Pelosi, of Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingeg-
neria (DEIB), Via G. Ponzio 34/5, I-20133, Milano, Italy, am one of the owners of the submitted
reference implementation and optimized implementations and hereby grant the U.S. Government
and any interested party the right to reproduce, prepare derivative works based upon, distribute
copies of, and display such implementations for the purposes of the post-quantum algorithm public
review and evaluation process, and implementation if the corresponding cryptosystem is selected for
standardization and as a standard, notwithstanding that the implementations may be copyrighted
or copyrightable.

Signed:

Title:

Date:

Place:

Statement by Each Submitter

I, Paolo Santini, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, do hereby declare that the cryptosystem, ref-
erence implementation, or optimized implementations that I have submitted, known as LEDAcrypt,
is my own original work, or if submitted jointly with others, is the original work of the joint submit-
ters. I further declare that I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LEDAcrypt.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference imple-
mentation or optimized implementations and the right to use such implementations for the purposes
of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosys-
tem) is removed from consideration for standardization or withdrawn from consideration by all
submitter(s) and owner(s), I understand that rights granted and assurances made under Sections
2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may
be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

Statement by Reference/Optimized Implementations’ Owner(s)

I, Paolo Santini, of Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
(DII), Via Brecce Bianche 12, I-60131, Ancona, Italy, am one of the owners of the submitted ref-
erence implementation and optimized implementations and hereby grant the U.S. Government and
any interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected for stan-
dardization and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed:

Title:

Date:

Place:

