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Abstract. We consider two interrelated code-based cryptosystems: the
key encapsulation mechanism LEDAkem and the public-key cryptosys-
tem LEDApkc, which are among the round 1 submissions to the NIST
post-quantum cryptography project.
We provide a detailed quantification of the quantum and classic compu-
tational effort levels needed to foil the cryptographic guarantees of these
systems. To this end, we take into account the best attacks that can be
mounted against them employing both classical and quantum computers,
and compare their computational complexities with the ones required to
break AES, coherently with the NIST requirements.
We introduce an algorithmic optimization procedure to design new sets
of parameters for LEDAkem and LEDApkc and make the corresponding
software implementation publicly available. We report novel parameter
sets for LEDAkem and LEDApkc that match the security levels in the
NIST call and make the C99 reference implementation of the systems
exhibit significantly improved figures of merit, in terms of both running
times and key sizes.
As a further contribution, we develop a theoretical characterization of
the decryption failure rate (DFR) of LEDA cryptosystems, which allows
new instances of the systems with guaranteed low DFR to be designed.
Such a characterization is crucial to withstand recent attacks exploiting
the reactions of someone decrypting ciphertexts with the same private
key, and consequentially it is able to guarantee a lifecycle of the cor-
responding key pairs which can be sufficient for the wide majority of
practical purposes.

1 Introduction

This document reports theoretical and implementation advancements concern-
ing two cryptosystems that have been admitted as round 1 candidates to the
NIST call for post-quantum cryptographic systems [24], named LEDAkem (low
density parity-check code-based key encapsulation mechanism) and LEDApkc
(low-density parity-check code-based public-key cryptosystem).



2 M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini

The mathematical problem on which these systems rely is the one of decoding
a random-looking linear block code, which is one of the problems whose solution
cannot exploit any known polynomial time algorithm on a quantum computer.
Such a problem in fact belongs to the class of NP-complete problems [5,16],
which is widely believed to contain problems without polynomial time solution
on a quantum computer. This line of research was initiated by McEliece in
1978 [20], using Goppa codes as secret codes, and Niederreiter in 1986 [25],
with a first attempt of introducing generalized Reed-Solomon (GRS) codes in
this framework. With the main aim of reducing the public key size, several
other families of codes have been considered during years, like quasi-cyclic (QC)
codes [10], low-density parity-check (LDPC) codes [23], quasi-dyadic (QD) codes
[21], quasi-cyclic low-density parity-check (QC-LDPC) codes [3] and quasi-cyclic
moderate-density parity-check (QC-MDPC) codes [22].

The distinguishing points of the LEDAkem and LEDApkc cryptosystems
with respect to other code-base post-quantum cryptosystems relies on the use
of QC-LDPC codes as secret codes and on an efficient decoding algorithm re-
cently introduced for codes of this kind in [2]. The two main attacks that can be
mounted against these systems are a decoding attack (DA) and a key recovery
attack (KRA) both exploiting information set decoding (ISD) algorithms, which
are algorithms for decoding a general linear block code. In addition, a recent
class of attacks based on the information leakage arising from the observation
of the reaction of someone decrypting ciphertexts with the same private key,
have proved to be effective in reducing the life length of keypairs used in code-
based cryptosystems characterized by a non-zero DFR [7,8,14]. In the following
sections we analyse all the aforementioned attacks and detail how to tune the
parameter design of LEDA cryptosystems to foil them.

Contribution. The contribution of this manuscript can be summarized as fol-
lows. (i) A quantification of the quantum and classic computational effort levels
we considered as the computational requirements to break AES. We relied on
classical circuit design estimates for the classical computing complexity, and on
the work by Grassl et al. at PQCrypto 2016 [12] for the quantum computing
complexity. (ii) The description of a new algorithmic approach to the design of
LEDAkem and LEDApkc instances with optimal and tight parameters, based on
the NIST requirements. The proposed approach employs estimations of the com-
putational efforts required to perform Information Set Decoding attacks in the
finite regime (as opposed to employing asymptotic bounds) as well as executing
an exhaustive search in the parameter space of the algorithms. (iii) New optimal
parameters of the LEDA cryptosystems matching the NIST security requests,
which allows us to show running time and key size figures exhibiting a ×3.5–×6.8
speedup on the original reference implementation and a ≈ ×2 key size reduction
w.r.t. the original submission parameters. (iv) A novel technique allowing us to
design a set of QC-LDPC code parameters for use in LEDAkem/LEDApkc de-
riving an upper bound to the code DFR in closed-form. This allows to include
a bound on the DFR as a parameter design criterion. Finally, we report sample
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sets of parameters targeting an upper bound for the DFR of 2−64 for long term
keys in LEDApkc.

Preliminaries and notation. LEDAkem and LEDApkc leverage the same
theoretical framework, the main difference being that LEDAkem implements a
Niederreiter-like cryptosystem, while LEDApkc follows the McEliece approach.
In addition, LEDApkc implements a conversion which allows using public gen-
erator matrices in systematic form and to achieve security against a chosen
ciphertext attack (CCA) under the assumption of negligible DFR. Since these
modifications make the description of LEDApkc more involved than that of
LEDAkem, we will follow the conventions and notation of the latter for the
sake of simplicity. Nevertheless, our analysis can be equally applied to either
LEDAkem or LEDApkc.

LEDAkem [2] exploits a secret key (SK) formed by two binary matrices:
H is the binary parity-check matrix of a secret QC-LDPC code and Q is a
secret transformation matrix. The code described by H has length n = pn0 and
dimension k = p(n0 − 1), where p is a large integer and n0 is a small integer.
The matrix H is formed by a row of n0 circulant matrices with size p × p and
weight dv. The matrix Q is formed by n0 × n0 circulant matrices whose weights
coincide with the entries of m̄ = [m0,m1, . . . ,mn0−1] for the first row and with
those of cyclically shifted versions of m̄ for the subsequent rows. Both H and Q
are sparse matrices. Their product H ′ = HQ still gives a sparse matrix that is
a valid parity-check matrix of the public code. Due to its sparsity, H ′ cannot be
disclosed, thus the public key is a linearly transformed version ofH ′ that hides its
sparsity. Concerning the error correction capability of these codes, let us remind
that QC-LDPC codes are decoded through iterative algorithms that are not
bounded-distance decoders. Therefore, their decoding radius is not deterministic
and the decoding failure rate is bounded away from zero. We denote as t � n
the number of errors that can be corrected by the code defined by H with a
sufficiently large probability, and the code itself is denoted as C(n, k, t). Given
t, encryption starts with mapping of the secret message (or part of it) into a
random binary vector e with length of n bits and Hamming weight t. Indeed,
the secret message in LEDAkem is a randomly generated key, thus e is randomly
generated. Then, a syndrome of e is computed through the public parity-check
matrix and this gives the ciphertext. Decryption starts by performing syndrome
decoding through the private code, which allows recovering the expanded error
vector e′ = eQT (apart from some DFR). Then e is recovered from e′ through
multiplication by the inverse of Q.

Paper organization. The document is organized as follows. In Section 2 we
define the security level benchmarks we consider, in compliance with the NIST
requirements. In Section 3 we describe the attacks we take into account into the
design approach we propose. In Section 4 we describe an algorithmic procedure,
publicly available in software, for the design of optimization of sets of parameters
of these systems. In Section 5 we provide a new parametrization of these systems
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which includes tighter, optimal choices of the system parameters. In Section 6 we
introduce a theoretical characterization of the DFR of LEDAkem and LEDApkc,
and report parameter sets which guarantee a DFR lower than 2−64.

2 Security level goals

The bar to be cleared to design parameters for post-quantum cryptosystems
was set by NIST to the computational effort required on either a classical or
a quantum computer to break the Advanced Encryption Standard (AES) with
a key size of λ bits, λ ∈ {128, 192, 256}, through an exhaustive key search.
The three pairs of computational efforts required on a classical and quantum
computer correspond to NIST Category 1, 3, and 5, respectively. Throughout
the design of the parameters for the LEDA cryptosystems we ignore Categories 2
and 4: if a cipher matching those security levels is required, we advise to employ
the parameters for Categories 3 and 5, respectively.

The computational worst-case complexity of breaking AES on a classical
computer can be estimated as 2λCAES, where CAES is the amount of binary op-
erations required to compute AES on a classical computer on a small set of
plaintexts, and match them with a small set of corresponding ciphertexts to val-
idate the correct key retrieval. Indeed, more than a single plaintext-ciphertext
pair is required to retrieve AES keys [12]. In particular, a validation on three
plaintext-ciphertext pairs should be performed for AES-128, on four pairs for
AES-192 and on five for AES-256.

Willing to consider a realistic AES implementation for exhaustive key search
purposes, we refer to [30], where the authors survey the state of the art of
Application-Specific Integrated Circuit (ASIC) AES implementations, employ-
ing the throughput per Gate Equivalent (GE) as their figure of merit. The most
performing AES implementations are the ones proposed in [30], and require
around 16ki GEs. We thus deem reasonable to estimate the computational com-
plexity of an execution of AES as 16ki binary operations. We are aware of the
fact that this is still a conservative estimate, as we ignore the cost of the inter-
connections required to carry the required data to the AES cores.

The computational complexity of performing an AES key retrieval employing
a quantum computer was measured first in [12], where a detailed implementation
of an AES breaker is provided. The computation considers an implementation
of Grover’s algorithm [13] seeking the zeros of the function given by the binary
comparison of a set of AES ciphertexts with the encryption of their corresponding
plaintexts for all the possible key values. The authors of [12] chose to report the
complexity of the quantum circuit computing AES counting only the number
of the strictly needed Clifford and T gates, since they are the ones currently
most expensive to implement in practice. Selecting a different choice for the
set of quantum gates employed to realize the AES circuit may yield a different
complexity; however, the difference will amount to a reasonably small constant
factor, as it is possible to re-implement the Clifford and T gates at a constant
cost with any computationally complete set of quantum gates. We thus consider
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Table 1. Classical and quantum computational costs to perform an exhaustive key
search on AES

NIST AES Key Size Classical Cost Quantum Cost [12]
Category (bits) (binary operations) (quantum gates)

1 128 2128 · 214 · 3 = 2143.5 1.16 · 281
3 192 2192 · 214 · 4 = 2208 1.33 · 2113
5 256 2256 · 214 · 5 = 2272.3 1.57 · 2145

the figures reported in [12] as a reference for our parameter design procedure.
In Table 1 we summarize the computational cost of performing exhaustive key
searches on all three AES variants (i.e., with 128, 192, and 256 bits long keys),
both considering classical and quantum computers.

3 Evaluated attacks

With reference to the LEDA cryptosystems specification [1], let us briefly recall
the set of attacks to be considered in the design of the system parameters. In ad-
dition to those advanced attacks, we also consider some basic attack procedures,
like exhaustive key search, which must be taken into account in any automated
cryptosystem parameter optimization, since they impose some bounds on the
system parameters.

An open source software implementation of the routines for computing the
complexity of the described attacks is available at https://github.com/ledacrypt.

3.1 Attacks based on exhaustive key search

Enumerating all the possible values for the secret key is, in principle, applica-
ble to any cryptosystem. The original LEDA cryptosystems specification docu-
ments [1] do not mention exhaustive key search, as they are strictly dominated
by other, less computationally demanding, attack strategies such as the use of
Information Set Decoding (ISD) algorithms.

In this parameter revision, in order to pose suitable bounds to the automated
parameter search we perform, we consider the application of an exhaustive enu-
meration strategy to each one of the two secret low-density binary matrices con-
stituting the LEDA cryptosystems secret keys, i.e., H and Q. We recall that H
is a block circulant binary matrix constituted by 1×n0 circulant blocks with size
equal to p bits, where n0 ∈ {2, 3, 4} and p is a prime such that ord2(p) = p− 1
(i.e., 2p−1 mod p = 1 mod p). Q is a binary block circulant matrix constituted
by n0 × n0 binary circulant blocks with size p. Willing to follow a conservative
approach, we design revised parameter sets such that it is not possible for an at-
tacker to enumerate all the possible matrices H or Q. While there is no standing

https://github.com/ledacrypt
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attack benefiting from such an enumeration, we deem reasonable adding such a
constraint to the design of the parameter sets as a peace-of-mind measure.

Considering that each row of a circulant block of H has Hamming weight
dv, a straightforward counting argument yields ]H =

(
p
dv

)n0 as the number of
possible choices for H. The number of possible choices for Q, denoted as ]Q,
can be derived starting from the consideration that the weights of a row of each
circulant block in a block-row of Q are equal for all the rows up to a circular
shift. Such weights, reported as {m0, . . . ,mn0−1} in the original specification
document [1], allow to write the number of possible choices for Q as ]Q =[∏

i∈{m0,...,mn0−1}
(
p
i

)]n0

.
We also consider the possibility that an attacker performs an exhaustive key

search employing a quantum computer. In such a case, the best scenario for the
attacker is that it is possible to exploit Grover’s algorithm to compute and test
the value of the public key. Assuming conservatively that the test can be imple-
mented, we consider the resistance against exhaustive key search with a quantum
computer to be

√
]H and

√
]Q for the search over H and Q, respectively.

In our approach, to prevent attacks relying on the exhaustive search for the
value of either H or Q, we considered the remainder of the attack strategy which
may be employed to derive the matrix which is not found via exhaustive search
to have a constant complexity (i.e. Θ(1)). This in turn implies that any attack
strategy which leverages the exhaustive search ofH orQ to obtain information to
speed up a key recovery will in turn have a computational complexity matching
or exceeding the required security level.

We note that, for all parameter sets proposed in the original specification [1],
the cost of enumerating H and Q exceeds that of the best attacks via ISD.

3.2 Attacks based on information set decoding

It is well known that efficient message and key recovery attacks against McEliece
and Niederreiter cryptosystem variants based on low-density (LDPC) and moderate-
density (MDPC) parity-check codes are those exploiting information set decod-
ing (ISD) algorithms. Such algorithms have a long development history, dating
back to the early ’60s [26], and provide a way to recover the error pattern af-
fecting a codeword of a generic random linear block code given a representation
of the code in the form of either its generator or parity-check matrix.

Despite the fact that the improvement provided by ISD over the straightfor-
ward enumeration of all the possible error vectors affecting the codeword is only
polynomial, employing ISD provides substantial speedups. It is customary for
ISD variant proposers to evaluate the effectiveness of their attacks considering
the improvement on a worst-case scenario as far as the code rate and number of
corrected errors goes (see, for instance [4]). Such an approach allows deriving the
computational complexity as a function of a single variable, typically taken to be
the code length n, and obtaining asymptotic bounds for the behavior of the al-
gorithms. In our parameter design, however, we chose to employ non-asymptotic
estimates of the computational complexity of the ISD attacks. Therefore, we
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explicitly compute the amount of time employing a non-asymptotic analysis of
the complexity of ISD algorithms, given the candidate parameters of the code
at hand. This approach also allows us to retain the freedom to pick rates for our
codes which are different from the worst-case one for decoding, thus exploring
different trade-offs in the choice of the system parameters. In case the ISD algo-
rithm has free parameters, we seek the optimal case by explicitly computing the
complexity for a large region of the parameter space, where the minimum com-
plexity resides. We consider the ISD variants proposed by Prange [26], Lee and
Brickell [17], Leon [18], Stern [28], Finiasz and Sendrier [9], and Becker, Joux,
May and Meurer (BJMM) [4] in our computational complexity evaluation on
classical computers. The reason for considering all of them is to avoid concerns
on whether their computational complexity in the finite-length regime is already
well approximated by their asymptotic behavior.

In order to estimate the computational complexity of ISD on quantum com-
puting machines, we consider the results reported in [6], which are the same
employed in the original specification [1]. Since complete and detailed formulas
are available only for the ISD algorithms proposed by Lee and Brickell, and
Stern [28], we consider those as our computational complexity bound. While
asymptotic bounds show that executing a quantum ISD derived from the May-
Meurer-Thomae (MMT) algorithm [19] is faster than a quantum version of
Stern’s [15], we note that there is no computational complexity formulas avail-
able for generic code and error rates.

Message recovery attacks through ISD. ISD algorithms can effectively
be applied to recover the plaintext message of any McEliece or Niederreiter
cryptosystem instance by retrieving the intentional error pattern used during
encryption. When a message recovery attack of this kind is performed against a
system variant exploiting quasi cyclic codes, like those at hand, it is known that a
speedup equal to the square root of the circulant block size can be achieved [27].
We consider such message recovery attacks in our parameter design, taking this
speedup into account in our computations.

Key recovery attacks through ISD. The most efficient way, and currently
the only known way, to exploit the sparsity of the parity checks that characterizes
the secret code representation H ′ = HQ in order to attack the LEDA cryptosys-
tems is trying to recover a codeword of the code described by H ′. Indeed, such
codewords have a weight that is very close or equal to d′ = n0dv(

∑n0−1
i=0 mi),

which is comparatively small with respect to the codeword length n.
Any sparse row of H ′ is a low-weight codeword belonging to the dual of the

public code. Therefore, it is possible to re-purpose the ISD procedures to per-
form such a codeword retrieval more efficiently than trying all the

(
n
d′

)
possible

codewords. Indeed, the complexity of accomplishing this task through ISD is
equal to the one of decoding a code of the same length n, with dimension equal
to the redundancy r = n− k of the code at hand, and with d′ errors.
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We consider such key recovery attacks in our parameter design, evaluating
their complexity for all the aforementioned ISD algorithms.

4 Parameter design procedure

In this section we describe an automated procedure for the design of tight
and optimal sets of parameters for the LEDA cryptosystems. This procedure
is available in a public domain software implementation at https://github.
com/LEDAcrypt/LEDAtools.

Concerning the DFR of the designed system instances, we consider a param-
eter ε that tunes the expected DFR for the code, as described in the specification
[1]. The instances originally proposed for the NIST competition have been de-
signed with ε = 0.3: the resulting DFR values were in the range 10−9–10−8.
In this section, for the sake of comparison, we consider the same DFR target.
This is sufficient in those cases were reaction attacks are not relevant, as in
LEDAkem with ephemeral keys and indistinguishability under chosen plaintext
attack (IND-CPA). When a negligible DFR is required (e.g., for guaranteeing a
very long life of any keypair or as an assumption for proving indistinguishability
under chosen ciphertext attack (IND-CCA)), the approach described in Section
6 can be followed.

The LEDA cryptosystems design procedure described in this section takes
as input the desired security level λc and λq, expressed as the base-2 logarithm
of the number of operations of the desired computational effort on a classical
and quantum computer, respectively. In addition to λc and λq, the procedure
also takes as input the number of circulant blocks, n0 ∈ {2, 3, 4}, forming the
parity-check matrix H, allowing tuning of the code rate. As a third and last
parameter, the procedure takes as input the value of ε, which tunes the system
DFR. The parameter design procedure outputs the size of the circulant blocks, p,
the weight of a column of H, dv, the number of intentional errors, t, the weights
of the n0 blocks of a row of Q, i.e., 〈m0,m1, . . . ,mn0−1〉, with

∑n0−1
i=0 mi = m.

The procedure enforces the following constraints on the parameter choice:

– Classical and quantum exhaustive searches for the values of H or Q should
require at least 2λc and 2λq operations. This constraint binds the value of
the circulant block p and the weight of a row of the circulant block, dv for
H and, mi for Q, to be large enough.

– The minimum cost for a message recovery via ISD on both quantum and
classical computers must exceed 2λq and 2λc operations, respectively. This
constraint binds the values of the code length n = n0p, the code dimension
k = (n0 − 1)p and the number of errors t to be chosen such that an ISD on
the code C(n, k, t) requires more than 2λq or 2λc operations on a quantum
and classical computer.

– The minimum cost for a key recovery attack via ISD on both quantum and
classical computers must exceed 2λq and 2λc operations, respectively. This
constraint binds the values of the code length n = n0p, the code redundancy
r = p and the number of ones in a row of HQ, d′vn0, with d′v = d′vm to be

https://github.com/LEDAcrypt/LEDAtools
https://github.com/LEDAcrypt/LEDAtools
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chosen such that an ISD on the code C(n, r, d′vn0) requires more than 2λq or
2λc operations on a quantum and classical computer.

– The choice of the circulant block size, p, should be such that p is a prime
number and such that ord2(p) = p− 1 [1].

– The choice of the circulant block size, p, and parity-check matrix density,
n0dv, must allow the code to correct the required amount of errors. This is
tested through the computation of the decoding threshold, as described in
the original specification [1].

– The weights of the circulant blocks of Q must guarantee the existence of
its multiplicative inverse according to the criterion defined in the LEDA
specification [1], i.e., the permanent of the matrix of the block weights must
be odd.

We report a synthetic description of the procedure implemented in the publicly
available code as Algorithm 1. The rationale of the procedure3 is to proceed in
refining the choice for p, t, dv, and all the mi’s at fix point, considering only
values of p respecting ord2(p) = p− 1.

Since there are cyclic dependences among the constraints on p, t, dv and m,
the search for the parameter set is structured as a fix-point solver iterating on a
test on the size of p (lines 2–28).

The loop starts by analyzing the next available prime p extracted from a list
of pre-computed values such that ord2(p) = p− 1, and sorted in ascending order
(line 3). The length, n, dimension, k, and redundancy, r = n − k, of the code
are then assigned to obtain a code rate equal to 1 − 1

n0
(line 4). Subsequently,

the procedure for the parameter choice proceeds executing a loop (lines 5–7) to
determine a value t, with t < r, such that a message recovery attack on a generic
code C(n, k, t) requires more than the specified amount of computational efforts
on both classical and quantum computers.

To determine the weight of a column of H, i.e., dv and the weight of a
column of Q, i.e., m, with m =

∑n0−1
i=0 mi, the procedure moves on searching

for a candidate value of d′v, where d′v = dvm and d′vn0 is the weight of a row
of HQ. Given a value for d′v (line 8 and line 21), the value of dv is computed
as the smallest odd integer greater than the rounded value of the square root
of d′v (line 10). The condition of dv being odd is sufficient to guarantee the non
singularity of the circulant blocks of H, while the square root computation is
meant to distribute the weight d′v evenly between the weight of a column of H
and the weight of a column of Q. The weight of a column of Q, i.e., m, is then
computed through the loop in lines 11–15. Specifically, the value ofm must allow
a partition in n0 integers (i.e., m =

∑n0−1
i=0 mi) such that the permanent of the

circulant integer matrix having the said partition as a row is odd, for the matrix
Q to be invertible [1]. Therefore, in the loop body the value of m is assumed as⌈
d′v
dv

⌉
(line 13) and subsequently checked to derive the mentioned partition in n0

3 Note that, in the pseudocode of Algorithm 1, the loop construct
while(< condition >) . . . iterates the execution of instructions in the loop body when
the condition is true, while the loop construct Repeat . . .until(< condition >)
iterates the instructions in the loop body when the condition is false
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Algorithm 1: LEDAkem/LEDApkc Parameter Generation
Input: λc, λq :desired security levels against classical and quantum attacks, respectively;

ε: safety margin on the minimum size of a circulant block of the secret parity-check
matrix H, named pth = p(1 + ε), where p is the size of a circulant block, so that the
code is expected to correct all the errors with acceptable DFR;
n0: number of circulant blocks of the p× n0p parity-check matrix H of the code.
The Q matrix is constituted by n0 × n0 circulant blocks as well, each of size p.

Output: p: size of a circulant block; t: number of errors; dv : weight of a column of the
parity matrix H; 〈m0,m1, . . . ,mn0−1〉: an integer partition of m, the weight of a
row of the matrix Q. Each mi is the weight of a block of Q

Data: NextPrime(x): subroutine returning the first prime p larger than the value of the
input parameter and such that ord2(p) = p− 1;
C-ISD-Cost(n, k, t),Q-ISD-Cost(n, k, t): subroutines returning the costs of the
fastest ISDs employing a classical and a quantum computer, respectively;
]Q: number of valid n0p × n0p block circulant matrices,

]Q =

(∏
i∈{m0,...,mn0−1}

(p
i

))n0
;

]H: number of valid p × n0p block circulant matrices, ]H =
( p
dv

)n0 ;
FindmPartition(m,n0): subroutine returning two values. The former one is a sequence
of numbers composed as the last integer partition of m in n0 addends ordered
according to the lexicographic order of the reverse sequences, i.e.,
〈m0,m1, . . . ,mn0−1〉, (this allows to get a sequence of numbers as close as possible
among them and sorted in decreasing order). The latter returned value is a Boolean
value PermanentOk which points out if the partition is legit (true) or not (false).

1 p← 1
2 repeat
3 p← NextPrime(p)
4 n← n0p, k ← (n0 − 1)p, r ← p

5 t← 1

6 while
(
t ≤ r ∧

(
C-ISD-Cost(n, k, t) < 2λc ∨Q-ISD-Cost(n, k, t) < 2λq

))
do

7 t← t+ 1

8 d′v ← 4
9 repeat

10 dv ←
⌊√

d′v
⌋
− 1− (

⌊√
d′v
⌋
mod 2)

11 repeat
12 dv ← dv + 2

13 m←
⌈
d′v
dv

⌉
14 〈m0,m1, · · · ,mn0−1〉, PermanentOk← FindmPartition(m,n0)

15 until PermanentOk = true ∨ (m < n0)
16 if (m > n0) then
17 SecureOk← C-ISD-Cost(n, r, n0d

′
v) ≥ 2λc ∧Q-ISD-Cost(n, r, n0d

′
v) ≥ 2λq

18 SecureOk← SecureOk ∧ ]H ≥ 2λc ∧
√
]H ≥ 2λq ∧ ]Q ≥ 2λc ∧

√
]Q ≥ 2λq

19 else
20 SecureOk← false

21 d′v ← d′v + 1

22 until
(
SecureOk = true ∨ d′vn0 ≥ p

)
23 if (SecureOk = true) then
24 pth ← BFth(n0,mdv, t)
25 else
26 pth ← p

27 until p > pth(1 + ε)

28 return (p, t, dv,m, 〈m0,m1, · · · ,mn0−1〉)

integers. The loop (lines 11–15) ends when either a valid partition of m is found
or m turns to be smaller than the number of blocks n0 (as finding a partition in
this case would be not possible increasing only the value of dv).
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Algorithm 1 proceeds to test for the security of the cryptosystem against key
recovery attacks and key enumeration attacks on both classical and quantum
computers (lines 16–18). If a legitimate value for m has not been found the
current parameters of the cryptoystem are deemed insecure (line 20). In line 21,
the current value of d′v is incremented by one and another iteration of the loop
is executed if the security constraints are not met with the current parameters
(i.e., SecureOk = false) and it is still viable to perform another iteration to
check the updated value of d′v, i.e., d′vn0 < p (line 22).

If suitable values for the code parameters from a security standpoint are
found, the algorithm computes the minimum value of p, named pth, such that the
decoding algorithm is expected to correct t errors, according to the methodology
reported in [1] (see lines 23–24); otherwise, the value of pth is forced to be equal
to p (lines 25–26) in such a way that another iteration of the outer loop of
Algorithm 1 is executed through picking a larger value of p and new values for
the remaining parameters.

We note that, while this procedure provides a sensible estimation of the fact
that the QC-LDPC code employing the generated parameters will correct the
computed amount of errors, this is no substitute for a practical DFR evaluation,
which is then performed through Montecarlo simulations. Alternatively, the ap-
proach described in Section 6 for achieving guaranteed DFR can be followed.
Willing to target a DFR of 10−9, we enlarged heuristically the value of p until
the target DFR was reached, (in steps of 5% of the value found by the tool).
The enlargement took place for: (Category 1, n0 = 4, once).
The C++ tool provided follows the computation logic described in Algorithm 1,
but is optimized to reduce the computational effort as follows:
– The search for the values of t and d′v respecting the constraints is performed

by means of a dichotomic search instead of a linear scan of the range.
– The computations of the binomial coefficients employ a tunable memorized

table to avoid repeated re-computation, plus a switch to Stirling’s approxi-
mation (considering the approximation up to the fourth term of the series)
only in the case where the value of

(
a
b

)
is not available in the table and

b > 9. In case the value of the binomial is not available in the table and
b < 9 the result is computed with the iterative formula for the binomial,
to avoid the discrepancies between Stirling’s approximation and the actual
value for small values of b.

– The values of p respecting the constraint ord2(p) = p − 1 are precomputed
up to 119981 and stored in a lookup table.

– The search for the value of p is not performed scanning linearly the afore-
mentioned table. The strategy to find the desired p starts by setting the
value of the candidate for the next iteration to NextPrime(d(1 + ε)pthe)
up to finding a value of p, p̄ which satisfies the constraints. Subsequently
the algorithm starts scanning the list of primes linearly from p̄ backwards to
find the smallest prime which satisfies the constraints.

The C++ tool relies on Victor Shoup’s NTL library (available at https://www.
shoup.net/ntl/), in particular for the arbitrary precision integer computations

https://www.shoup.net/ntl/
https://www.shoup.net/ntl/
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Table 2. Parameter sizes obtained with the parameter design tool, compared to the
ones appearing in the original specification [1]

Revised Original Submission
NIST n0 p t dv m errors out of p t dv m errors out of
Cat. decodes decodes

1
2 15, 013 143 9 [5, 4] 0 out of 1 · 109 27, 779 224 17 [4, 3] 19 out of 2.22 · 109
3 9, 643 90 13 [3, 2, 2] 1 out of 1 · 109 18, 701 141 19 [3, 2, 2] 0 out of 1 · 109
4 8, 467 72 11 [3, 2, 2, 2] 0 out of 1 · 109 17, 027 112 21 [4, 1, 1, 1] 0 out of 1 · 109

3
2 24, 533 208 13 [5, 4] 0 out of 1 · 108 57, 557 349 17 [6, 5] 0 out of 1 · 108
3 17, 827 129 15 [4, 3, 2] 0 out of 1 · 108 41, 507 220 19 [3, 4, 4] 0 out of 1 · 108
4 14, 717 104 15 [3, 2, 2, 2] 0 out of 1 · 108 35, 027 175 17 [4, 3, 3, 3] 0 out of 1 · 108

5
2 37, 619 272 11 [7, 6] 0 out of 1 · 108 99, 053 474 19 [7, 6] 0 out of 1 · 108
3 28, 477 172 13 [5, 4, 4] 0 out of 1 · 108 72, 019 301 19 [7, 4, 4] 0 out of 1 · 108
4 22, 853 135 13 [4, 3, 3, 3] 0 out of 1 · 108 60, 509 239 23 [4, 3, 3, 3] 0 out of 1 · 108

and the tunable precision floating point computations and requires a compiler
supporting the C++11 standard.

5 Revised parameter sets and figures of merit

In this section we report a comparison of the parameters of the LEDA cryp-
tosystems obtained with the design procedure described in Section 5, which are
reported in Table 2, in comparison with those reported in the original speci-
fication [1]. Deriving the parameters in Table 2 took approximately a day for
all the parameter sets with n0 ∈ {3, 4} and approximately a month for all the
parameters sets with n0 = 2 on a dual socket AMD EPYC 7551 32-Core CPU.
The memory footprint for each parameter seeking process was below 100 MiB.

As shown in Table 2, targeting the same computational effort of breaking
AES on a classical and quantum computer yields parameters sets having a code
of roughly half the length of the current LEDA cryptosystems. Such a fact is
justified by the former parameters targeting a higher security level, i.e., 2128,
2192, 2256 operations on a quantum computer. The revised parameter sets allow
to achieve the same DFR (experimentally validated via Montecarlo experiments)
as the ones in the submission documents.

5.1 Resulting computational complexities of the attacks

When an algorithmic procedure is exploited for the design of parameter sets,
as in our case, some constraints on the choice of the row/column weights of
H and Q must be imposed in such a way as to make enumeration of either
H or Q unfeasible to an attacker. Therefore, enumeration attacks of the type
described in Section 3.1 must be taken into account. In Table 3 we report the
computational cost of performing such an exhaustive enumeration, both with a
classical and a quantum computer. The latter has been obtained by applying
the speedup due to Grover’s algorithm to the complexity computed considering
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Table 3. Computational cost of an exhaustive enumeration attack on either the matrix
H or the matrix Q. The quantum execution model considers the possibility of attaining
the full speedup yielded by the application of Grover’s algorithm to the computation

NIST H Enumeration cost Q enumeration cost
Cat. n0 (log2 ]binary op.s) (log2 ]quantum gates)

Classical Quantum Classical Quantum

1
2 212.78 106.39 226.74 113.37
3 418.53 209.26 264.18 132.09
4 473.05 236.52 447.37 223.68

3
2 314.06 157.03 239.49 119.74
3 514.70 257.35 356.77 178.38
4 669.67 334.83 476.08 238.04

5
2 283.87 141.93 351.59 175.79
3 479.48 239.74 528.86 264.43
4 622.80 311.40 703.60 351.80

a classical computer. From the results in Table 3 it is straightforward to note
that, despite the reduction in key sizes from the ones proposed in the submis-
sion document, an exhaustive search on either H or Q is still clearly above the
required computational effort.

Then, as described in Section 3.2, the two main attacks that can be mounted
against the considered systems are message recovery attacks and key recovery
attacks based on ISD algorithms. The complexity of these attacks against the
new system instances is reported in Table 4 and Table 5. An interesting point to
be noted is that, while providing clear asymptotic speedups, the improvements
to the ISD algorithms proposed since Stern’s [28] are only able to achieve a
speedup between 22 and 24 when their finite regime complexities are considered
in the range of values concerning LEDA cryptosystems paramteters. Concerning
quantum ISDs, it is interesting to notice that the quantum variant of the Stern
algorithm as described by de Vries [6] does not achieve an effective speedup
when compared against a quantum transposition of Lee and Brickell’s ISD. Such
a result can be ascribed to the fact that the speedup obtained by the reduction in
the number of ISD iterations which can be obtained by Stern’s ISD is mitigated
by the fact that the overall number of iterations to be run is quadratically
reduced by applying Grover’s algorithm to execute them.
Comparing the computational complexities of the message decoding (Table 4)
and the key recovery attack (Table 5), we note that performing a message re-
covery attack is always easier than the corresponding key recovery attack on the
same parameter set, albeit by a small margin.

5.2 Performance of the cryptosystems with revised parameters

Willing to provide a preliminary gauge of the performance and keysize improve-
ments obtained from the new parameter sets proposed in this document, we
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Table 4. Cost of performing a message recovery attack, i.e., an ISD on the code
C(n0p, (n0−1)p, t), for the values of the parameters p, t reported in Table 2, employing
the considered ISD variants

NIST Classical computer Quantum computer
Cat. n0 (log2 ]binary op.s) (log2 ]quantum gates)

Prange [26] L-B [17] Leon [18] Stern [28] F-S [9] BJMM [4] Q-LB [6] Q-Stern [6]

1
2 176.12 165.14 163.29 149.83 149.81 146.40 100.73 102.13
3 174.76 164.27 161.33 148.84 148.83 145.46 99.96 101.37
4 176.03 165.68 162.10 149.86 149.85 147.43 100.82 101.57

3
2 243.03 230.98 229.09 213.51 213.50 210.85 134.53 135.94
3 238.83 227.31 224.25 209.74 209.73 207.22 132.59 133.99
4 242.09 230.68 227.00 212.69 212.68 210.13 134.31 135.71

5
2 308.65 295.82 293.87 276.78 276.78 274.51 167.73 169.13
3 308.72 296.37 293.25 277.12 277.11 274.21 167.97 169.37
4 305.71 293.55 289.79 274.01 274.01 271.22 166.54 167.94

Table 5. Cost of performing a key recovery attack, i.e., an ISD on the code
C(n0p, p, n0dvm), for the values of the parameters p, n0, dv,m reported in Table 2,
employing the considered ISD variants

NIST Classical computer Quantum computer
Cat. n0 (log2 ]binary op.s) (log2 ]quantum gates)

Prange [26] L-B [17] Leon [18] Stern [28] F-S [9] BJMM [4] Q-LB [6] Q-Stern [6]

1
2 188.32 176.98 175.19 161.01 161.00 157.97 103.18 104.59
3 187.53 175.62 174.16 159.53 159.50 156.14 103.14 104.55
4 193.53 181.22 179.00 164.77 164.74 161.70 106.59 108.00

3
2 261.91 249.51 247.68 231.42 231.41 228.83 140.16 141.56
3 266.69 253.65 251.58 235.24 235.22 232.66 143.05 144.45
4 254.97 241.77 238.99 223.43 223.41 220.05 137.66 139.07

5
2 315.12 302.15 300.22 282.85 282.84 280.60 167.09 168.49
3 327.69 314.00 311.52 294.21 294.21 291.19 173.90 175.30
4 312.69 298.86 295.66 279.13 279.12 276.06 166.84 168.24

report the results of the execution of both LEDAkem and LEDApkc employ-
ing the parameter sets reported in Table 2. We report, for the sake of a clear
comparison, also the execution time of the LEDAkem and LEDApkc employing
the original submission parameters on the same host. As shown in Table 6 and
Table 8 the running times of the LEDAkem and LEDApkc instances employing
the optimized parameter sets achieve a speedup in between 3× and 6.5× thanks
to the reduction in both the code length and in the number of non null terms
in both H and Q. The speedups are the result of a roughly 2× reduction in the
size of the code instances, and a consequent reduction in the number of non null
terms in H and Q. Such speedups are coherent with the quadratic complexity of
the reference implementation of the polynomial multiplication employed in the
encryption phase, and the O((dv +m)n) complexity of the decoder. It is worth
noting that a complete ephemeral KEM, with the architecture independent ref-
erence implementation completes in 10 to 15 milliseconds for NIST Category 1
parameters.
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Table 7 and Table 9 reports the keypair sizes for LEDAkem and LEDApkc,
respectively, together with the size of the encapsulated shared secret and ci-
phertext. The parameter optimization presented in this official comment allows
LEDAkem to have public key sizes which never exceed 10 kB for all the NIST
categories, and are below 3.5 kB for Category 1. It is also noteworthy that the
encapsulated secret for Category 1 are below 1500 kB for both n0 = 3 and
n0 = 4, allowing them to fit into the payload of a single Ethernet frame, with
enough room to contain the TCP/IP headers. LEDApkc allows plaintext sizes
ranging between 2 kB and 8.6 kB, depending on the NIST category, allowing
to encrypt directly a reasonable amount of information (e.g., some pages of an
ASCII text message).
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Table 6. Running times for key generation, encryption and decryption of LEDAkem as
a function of the chosen category and number of circulant blocks n0 on an Intel Skylake
i5-6600 at 3.6 GHz. The figures are taken employing the completely portable reference
implementation in ISO C99, compiled with GCC 6.3.0, employing -march=native -O3
as optimization parameters

Set Category n0
KeyGen Encrypt Decrypt Ephemeral
(ms) (ms) (ms) KEM (ms)

Revised

1
2 10.90 (± 0.35) 0.56 (± 0.03) 4.31 (± 0.49) 15.77
3 4.91 (± 0.22) 0.52 (± 0.03) 5.69 (± 0.33) 11.14
4 3.76 (± 0.17) 0.62 (± 0.04) 6.31 (± 0.62) 10.70

2–3
2 28.64 (± 0.48) 1.40 (± 0.08) 12.56 (± 1.19) 42.61
3 15.59 (± 0.39) 1.56 (± 0.08) 13.91 (± 0.87) 31.07
4 10.98 (± 0.34) 1.52 (± 0.10) 17.37 (± 0.75) 29.88

4–5
2 67.20 (± 1.21) 2.92 (± 0.10) 16.98 (± 0.66) 87.10
3 39.41 (± 0.63) 3.49 (± 0.17) 23.72 (± 1.44) 66.63
4 26.16 (± 0.75) 3.48 (± 0.09) 24.43 (± 1.05) 54.07

Submission

1
2 38.62 (± 0.71) 1.76 (± 0.13) 18.10 (± 0.54) 58.48
3 17.58 (± 0.41) 1.77 (± 0.13) 21.72 (± 1.66) 41.08
4 15.16 (± 0.41) 2.17 (± 0.15) 24.75 (± 1.49) 42.09

2–3
2 161.91 (± 1.63) 6.71 (± 0.27) 50.30 (± 4.14) 218.93
3 85.89 (± 0.70) 7.42 (± 0.30) 50.33 (± 1.84) 143.65
4 62.33 (± 0.84) 7.94 (± 0.30) 49.45 (± 2.09) 119.73

4–5
2 514.19 (± 2.94) 18.85 (± 0.39) 95.71 (± 4.67) 628.76
3 257.65 (± 1.67) 20.32 (± 0.40) 95.16 (± 2.23) 373.13
4 182.91 (± 2.66) 21.98 (± 0.47) 135.67 (± 4.22) 340.57

Table 7. Sizes of the key pair and encapsulated shared secret for LEDAkem as a
function of the chosen category and number of circulant blocks n0

.

Set Category n0
Private Key (B) Public Encap. Shared

At rest In memory Key (B) secret (B) secret (B)

Revised

1
2 24 468 1, 880 1, 880 32
3 24 604 2, 416 1, 208 32
4 24 716 3, 192 1, 064 32

2–3
2 32 644 3, 072 3, 072 48
3 32 828 4, 464 2, 232 48
4 32 924 5, 520 1, 840 48

4–5
2 40 764 4, 704 4, 704 64
3 40 988 7, 120 3, 560 64
4 40 1, 092 8, 592 2, 864 64

Submission

1
2 24 668 3,240 3,240 32
3 24 844 4,688 2,344 32
4 24 1,036 6,408 2,136 32

2–3
2 32 972 7,200 7,200 48
3 32 1,196 10,384 5,192 48
4 32 1,364 13,152 4,384 48

4–5
2 40 1,244 12,384 12,384 64
3 40 1,548 18,016 9,008 64
4 40 1,772 22,704 7,568 64
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Table 8. Running times for LEDApkc primitives as a function of the chosen category
and number of circulant blocks n0 on an Intel Skylake i5-6600 at 3.6 GHz. The figures
are taken employing the completely portable reference implementation in ISO C99,
compiled with GCC 6.3.0, employing -march=native -O3 as optimization parameters

Set Category n0
KeyGen Encrypt Decrypt
(ms) (ms) (ms)

Revised

1
2 13.07 (± 0.37) 0.75 (± 0.05) 4.77 (± 0.51)
3 5.75 (± 0.23) 0.75 (± 0.04) 6.04 (± 0.40)
4 4.63 (± 0.16) 0.94 (± 0.08) 6.54 (± 0.62)

2–3
2 33.99 (± 0.65) 1.60 (± 0.08) 13.42 (± 1.03)
3 18.46 (± 0.28) 1.94 (± 0.12) 14.90 (± 0.71)
4 13.01 (± 0.33) 2.15 (± 0.15) 18.22 (± 0.83)

4–5
2 79.36 (± 1.45) 3.34 (± 0.18) 18.51 (± 0.89)
3 46.72 (± 0.95) 4.20 (± 0.22) 25.20 (± 0.98)
4 30.62 (± 0.58) 4.35 (± 0.14) 26.46 (± 1.27)

Submission

1
2 45.30 (± 1.69) 3.11 (± 0.06) 20.87 (± 0.65)
3 20.96 (± 0.23) 3.10 (± 0.06) 25.18 (± 2.18)
4 17.99 (± 0.22) 3.94 (± 0.08) 28.30 (± 0.80)

2–3
2 198.49 (± 1.41) 12.06 (± 0.18) 62.55 (± 4.57)
3 100.39 (± 0.57) 13.06 (± 0.15) 57.58 (± 2.69)
4 72.78 (± 0.31) 14.18 (± 0.22) 59.75 (± 1.91)

4–5
2 558.84 (± 3.41) 33.96 (± 0.21) 115.36 (± 4.08)
3 298.91 (± 4.18) 37.28 (± 0.61) 116.93 (± 5.07)
4 208.90 (± 0.71) 39.85 (± 0.25) 157.23 (± 4.18)

Table 9. Sizes of the key pair, plaintext and ciphertext for LEDApkc as a function of
the chosen category and number of circulant blocks n0

Set Category n0
Private Key Size (B) Public Key Max Plaintext Ciphertext
At rest In memory size (B) size (B) size (B)

Revised

1
2 24 468 1,880 2,001 3,760
3 24 604 2,416 2,483 3,624
4 24 716 3,192 3,231 4,256

2–3
2 32 644 3,072 3,251 6,144
3 32 828 4,464 4,565 6,696
4 32 924 5,520 5,602 7,360

4–5
2 40 764 4,704 4,950 9,408
3 40 988 7,120 7,269 10,680
4 40 1,092 8,592 8,681 11,456

Submission

1
2 24 668 3, 480 3, 690 6, 960
3 24 844 4, 688 4, 813 7, 032
4 24 1, 036 6, 408 6, 496 8, 544

2–3
2 32 972 7, 200 7, 558 14, 400
3 32 1, 196 10, 384 10, 608 15, 576
4 32 1, 364 13, 152 13, 320 17, 536

4–5
2 40 1, 244 12, 384 12, 897 24, 768
3 40 1, 548 18, 016 18, 336 27, 024
4 40 1, 772 22, 704 22, 955 30, 272
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6 Bounded DFR for Q-decoders

Binary block error correction codes C(n, k) with a low density r×n parity check
matrix H ′ allow iterative decoding strategies which aim at solving at fix point
the simultaneous binary equation system given by s = H ′eT , where s ∈ Zr2 is a
1× r binary vector named as syndrome, e ∈ Zn2 is a 1× n binary vector with a
given number t� n of non-null entries named as error vector, representing the
unknown sequence of values to be found, while H ′ is assumed to have dv � n
non-null entries per column. Therefore, the purpose of an iterative decoding
procedure is to compute the values of the elements of e given H ′, s.

A common approach to perform iterative decoding is the Bit Flipping (BF)
strategy firstly described in [11]. Such an approach considers the i-th row of H ′,
with i ∈ {0, . . . , r− 1}, as a representation of the coefficients of the parity check
equation involving the unknown ej , with j ∈ {0, . . . , n− 1}, having as constant
term the i-th element of the syndrome s. Each coefficient is associated to a binary
variable ej ∈ Z2, i.e., a binary element of the error vector e whose value should
be determined. Initially, the guessed value of the error vector, denoted in the
following as ê, is assumed to be the null vector, i.e., ê = 01×n (which means that
the bits of the received message are initially assumed to be all uncorrupted).

The iterative BF decoding procedure repeats (at least one time) the execution
of two phases (named in the following as Count of the unsatisfied parity checks,
and Bit-flipping, respectively) until either all the values of the syndrome become
null (pointing out the fact that every value of e has been found) or an imposed
a-priori maximum number of iterations, lmax ≥ 1, is reached.

1. Count of the unsatisfied parity checks. The first phase of the decoding pro-
cedure analyses the parity check equations in which a given error variable êj
is involved, with j ∈ {0, . . . , n− 1}, i.e., the number of rows of H ′ where the
j-th element is non-null, and counts how many of them are unsatisfied, i.e.,
counts how many equations where there is a contribution of the unknown ej
have a constant term in the syndrome which is non-null. Such a count of the
number of unsatisfied parity check equations, upcj , can be computed for each
error variable êj , lifting the elements of s and H ′ from Z2 to Z and perform-
ing an integer vector (ς ← Lift(s)) by an integer matrix (H′ ← Lift(H ′))
product obtaining a 1× n integer vector upc(BF), i.e., upc(BF) ← ς H′.

2. Bit-flipping. The second phase changes (i.e., flips, hence the name bit-flipping)
each value of an error variable êj for which upc

(BF)
j exceeds a given threshold

b ≥ 1. Subsequently, it updates the value of the syndrome, computing it as
H ′êT , employing the new value of the êj variables in the process.

The LEDA cryptosystems leverage an alternate decoding strategy, which, while
retaining a fix point bit-flipping approach, is more efficient than the garden vari-
ety bit-flipping which was described. Such a procedure, known as the Q-decoder,
relies on the fact that the (secret) parity check matrix of the LEDA cryptosys-
tems H ′ is obtained as the product of two low-density matrices, i.e., H ′ = HQ,
where H has size r × n and number of non-null elements in a row equal to
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dc � n, while Q has size n× n and number of non-null elements in a row equal
to m� n. Due to the sparsity of both H and Q, their product HQ has a num-
ber of non-null row elements ≤ dcm, with the equality sign holding with very
high probability. Such a fact can be exploited to perform the first phase of the
bit-flipping decoding procedure in a more efficient way.

To do so, the Q-decoder proceeds to lift H and Q in the integer domain ob-
tainingH ← Lift(H) and Q ← Lift(Q), respectively. Subsequently, it performs
a decoding strategy similar to the one described above, as follows.

1. Count of the unsatisfied parity checks. The first phase is performed in two
steps. First of all, a temporary 1×n vector of integers upc(temp) is computed
in the same fashion as in the BF decoder, employing the lifted syndrome,
ς ← Lift(s), and H instead of H′, i.e., upc(temp) ← ς H. The value of the
actual 1 × n integer vector upc(Q−dec) storing the unsatisfied parity-check
counts is then computed as: upc(Q−dec) ← upc(temp) Q.

2. Bit-flipping. The second phase of the Q-decoder follows the same steps of
the BF one, flipping the values of the guessed error vector êj , j ∈ {0, . . . , n−
1}, for which the j-th unsatisfied parity-check count upc(Q−dec)j exceeds the
chosen threshold b. Subsequently, the value of the syndrome s is recomputed
as: s = HQêT .

In both the BF- and Q-decoder, the update to the syndrome value caused by the
flipping of the values of ê in the second phase of the procedure, can be computed
incrementally, adding only the contributions due to the value change of ê (see
the LEDA cryptosystems specification [1]).

The Q-decoder terminates with success its decoding procedure if s is null or
with a decoding failure if s is not null but the allowed number of iterations lmax

is exceeded.

Lemma 1 (Equivalence of the bit-flipping decoder and Q-decoder).
Let H and Q be the two matrices composing the parity-check matrix H ′ = HQ,
and denote as H′ ← Lift(H ′), H ← Lift(H), Q ← Lift(Q), the matrices ob-
tained through lifting their values in the integer domain. Assume a BF procedure
acting on H ′ and a Q-decoding procedure acting on H and Q, both taking as
input the same syndrome value s, providing as output an updated syndrome and
a guessed error vector ê (which is initialized as ê = 01×n at the beginning of the
computations), and employing the same bit-flipping thresholds. If H′ = HQ, the
BF and Q-decoding procedures compute as output same values for s, and ê.

Proof. The functional equivalence can be proven showing that the update to
the two state vectors, the syndrome s and the current ê performed by the bit-
flipping decoder and the Q-decoder leads to the same values at the end of each
iteration of the decoding algorithms. We start by observing that the second
phase of the BF and Q-decoder procedure will lead to the same state update
of s and ê if the values of the upc(BF) vector for the BF procedure and the
upc(Q−dec) vector for the Q-decoder coincide. Indeed, since the update only de-
pends on the values of the unsatisfied parity-checks and the flipping threshold
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b, if upc(BF) = upc(Q−dec) the update on ê and s will match. We consider, from
now on, the parity-check computation procedures as described before through
matrix multiplications over the integer domain, and prove that, during the first
phase, the BF decoder and the Q-decoder yield values of upc(BF) and upc(Q−dec)

such that upc(BF) = upc(Q−dec) under the hypothesis that the starting val-
ues for s and ê match. Considering the computation of upc(BF), and denoting
with h′ij the element of H ′ at row i, column j, we have that upc(BF) = ςH′,

hence upc(BF)
j =

r−1∑
z=0

h′zj sz. The computation of upc(Q−dec) proceeds as follows:

upc(Q−dec) = (ςH)Q =

n−1∑
i=0

(
r−1∑
z=0

sz hzi

)
qij =

r−1∑
z=0

(
n−1∑
i=0

hzi qij

)
sz.

Recalling the hypothesisH′ = HQ, it is possible to acknowledge that
n−1∑
i=0

hzi qij =

h′zj , which, in turn, implies that upc(Q−dec) = upc(BF). ut

We point out that, when H′ 6= HQ, it is not possible to state the equivalence of
the two procedures; however, some considerations about their behaviour can be
drawn as follows. The entry in the i-th row, j-th column ofH′ is different from the
one with the same coordinates in HQ when the scalar product between the i-th
row of H and the j-th column of Q equals an even number. The probability with

which such an event occur can be quantified as
∑min{m,dc}
i=2

(mi )(
n−m
dc−i)

( ndc)
. It is worth

noting that such a probability becomes negligible when the code parameters
(n,dc,m) take values of practical interest. Therefore, we have that either H′ =
HQ or the two matrices differ in a few number of entries implying that the two
decoding procedures will both return, with overwhelming probability, the same
result as differences in a few number entries in H′ and HQ can cause only a
few differences in the computation of the values of the unsatisfied parity check
counts upc(BF) and upc(Q−dec).

For the sake of simplicity, in the following, we assume that previous Lemma
holds and omit the superscript for denoting the vector of the unsatisfied parity-
check count upc.

Lemma 2 (Computational advantage of the Q-decoder). Let us consider
a bit-flipping decoding procedure and a Q-decoder procedure both acting on the
same parity matrix H ′ = HQ. The number of non-null entries of a column of H
is dv � n, the number of non-null entries of a column of Q is m� n, and the
number of non-null entries of a column of H ′ is dvm (assuming no cancellations
occur in the multiplication HQ). The computational complexity of an iteration of
the bit-flipping decoder equals O(dvmn+n), while the computational complexity
of an iteration of the Q-decoder procedure is O((dv +m)n+ n).

Proof. (Sketch) The proof can be obtained in a straightforward fashion with a
counting argument on the number of operations performed during the iteration
of the decoding procedures, assuming a sparse representation of H, H ′ and Q.
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In particular the amount of operations performed during the unsatisfied parity-
check count estimation phase amounts to O(dvmn) additions for the bit-flipping
decoder and to O((dv + m)n) for the Q-decoder, while both algorithms will
perform the same amount of bit flips O(n + r) = O(n) in the bit-flipping and
syndrome update computations. ut

The decoding failure rate of the Q-decoder is crucially dependent on the choice
made for the bit-flipping threshold b. Indeed, the designer aims at picking a value
of b satisfying the following criteria.

(i) The bit-flipping threshold b should be lower than the value of the unsatisfied
parity-check count upcj , j ∈ {0, . . . , n− 1} related to a value for which the
guessed value of the j-th error bit, êj , in the current iteration, is different
from the actual (and unknown) error vector j-th bit value, ej (i.e., ej 6= êj)
so that such êj is rightfully flipped.

(ii) The bit-flipping threshold b should be higher than an unsatisfied parity-
check count upcj related to a value for which ej = êj so that, in the current
iteration, the bit value in the guessed error vector êj is rightfully not flipped.

Observing that during the decoding procedure the j-th bit value of the guessed
error vector ê is flipped when upcj is higher than or equal to b, an ideal case
where it is possible to attain a null decoding failure rate (DFR) is the one in
which, whenever the maximum possible value of any unsatisfied parity-check
count upcj related to a variable êj = ej (i.e., no flip is needed) is lower than
the minimum possible value of upck related to any variable êk 6= ek (i.e., flip
is needed). Indeed, in this case, setting the threshold to any value b such that
max_upcno flip < b ≤ min_upcflip allows the Q-decoder to compute the value
of the actual error vector e in a single iteration.

To provide code parameter design criteria to attain a zero DFR in a single
iteration with the Q-decoder, we now analyse the contribution to the values of
upc provided by the bits of the actual error vector. Let uz ∈ Zn2 , with z ∈
{0, . . . , n − 1}, denote 1 × n binary vectors such that only the z-th component
of any uz is not null (i.e., it has unitary Hamming weight, wt(uz) = 1). We now
consider the actual error vector e as the sum of t ≥ 1 vectors in U = {u ∈
Zn2 , wt(u) = 1, z ∈ I}, where I ⊂ {0, . . . , n − 1} and |I| = t (thus it also holds
|U| = t), and quantify the contributions of each bit in e to the value of upcz
computed by the Q-decoder in its first iteration, proceeding backwards from each
u ∈ U composing e.

We describe the mentioned quantification with the aid of a running example
referred to the syndrome Q-decoding procedure of a toy code C(5, 3), assuming
that a single bit in the actual error vector is asserted, i.e., e = u2. Figure 1
reports a graphical description of the mentioned running example. Our aim is
to define a dvm× n matrix P(z) containing a set of parity-check equations, i.e.,
rows of H which contribute to upcz, z ∈ {0, . . . , n− 1}4.
4 Note that the notation P(z) denote a matrix whose values are related with the bit
in position z of the actual (unknown) error vector (it may include repeated rows).
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0
0
1
0
1

eT

1 0 0 1 1
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
1 0 1 0 1

Q

0
0
1
0
0

eT

=

(a)

0 1 1

s

=
1 0 1 1 1
0 1 0 0 1
1 1 1 1 0

H

0
0
1
0
1

eT

(b)

Fig. 1. Steps of the syndrome computation process of a toy code C(5, 3), having H
with constant column weight dv = 2 and Q with constant column weight m = 2. The
single bit error vector employed is e = u2 = (0, 0, 1, 0, 0). In (a) the error vector is
expanded as e = u2 + u4 = (0, 0, 1, 0, 1) after the multiplication by Q, e = (QeT )T . In
(b) the effect on the syndrome of multiplying e by H is shown, i.e., s =

(
H(QeT )

)T .
Consider the syndrome value s =

(
H(QeT )

)T obtained as the multiplica-
tion between the matrix Q and the actual error vector value e = uz, with
z ∈ {0, . . . , n − 1}, (i.e., QeT = QuTz ), followed by the multiplication between
the matrix H and the expanded error vector e(z) = QeT , with wt(e(z)) = m,

which has been computed in the previous step (i.e., s = H
((

e(z)
)T)T

.

Consider e(z) as the sum of m binary vectors uj , j ∈ {0, . . . , n − 1} with a
single non-null entry in the j-th position (see e(2) = u2 +u4, with u2 highlighted
in red and u4 in blue in Fig. 1). Each uj in e(z) is involved in all the parity-check
equations of H, i.e., the 1×n rows, Hi, with i ∈ {0, . . . , r−1}, having their j-th
element set to 1. It is thus possible to build a dvm× n matrix P(z) juxtaposing
all the parity equations in H such that their j-th element is set to 1, for all
the uj composing e(z). The P(z) matrix allows to compute the contribution to
the value upcz, z ∈ {0, . . . , n − 1} provided by any expanded error vector e(j),
j ∈ {0, . . . , n− 1}, as it is constituted by all and only the parity check equations
which will have their non null results counted to obtain upcz. Therefore, for any
binary variable ez, z ∈ {0, . . . , n−1}, in the actual error vector e, it is possible to
express the value of the corresponding unsatisfied parity-check count evaluated
by the decoding procedure as upcz ← wt

(
P(z)

(
e(z)

)T)
.

The construction of P(z) for the toy example is reported in Fig. 1, where
z = 2. P(z) is obtained by juxtaposing the rows H0 and H2, as they both involve
u2, and juxtaposing to them the rows H1 and H2 as they both involve u4.

Figure 2, provides a visual comparison of the two equivalent processes to
compute the value of upc2 considering the values of ς,H and Q obtained as the
integer lifts of s,H and Q from Fig. 1. Indeed, computing the value of upc2 as

The round brackets employed in the subscript are meant to disambiguate this object
from the notations related to the z-th row of a generic matrix P , i.e., Pz.
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0 1 1

ς

1 0 1 1 1
0 1 0 0 1
1 1 1 1 0

H

0 2 1 1 1

upc(temp)

1 0 0 1 1
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
1 0 1 0 1

Q

2

upc2

1 0 1 1 1
1 1 1 1 0
1 0 1 1 1
0 1 0 0 1

P(2)

0
0
1
0
1

(e(2))T

=

0
1
0
1

P(2)(e
(2))T

2

wt(P(2)(e
(2))T )

Fig. 2. Representation of the P(z) matrix for the running example (z = 2), and
computation of the upcz value both via Q and H, and employing P(z)

the third component of the vector ςHQ yields the same results as computing the
binary vector P(2)(e

(2))T and computing its weight.
Relying on the Pz matrices to express the contribution of a given expanded

error vector e(z), we are able rewrite the computation of upcz for a generic error
vector with t asserted bits, i.e., e =

∑
u∈U

ui, where I ⊂ {0, . . . , n−1} with |I| = t,

and U = {ui, wt(ui) = 1, i ∈ I}, as follows

upcz ← wt

 ∑
i∈I⊂{0,...,n−1}

P(z)

(
e(i)
)T = wt

(∑
u∈U

P(z)(Qu
T )

)
.

6.1 Q-decoders with zero DFR

Having provided a way to derive the contribution of any bit of an actual error
vector to a specific unsatisfied parity-check count upcz, following the work in [29]
for the BF-decoder, we now proceed to analyze the case of a Q-decoder which is
always able to correct all the errors in a single iteration of the decoding proce-
dure. To do so, the bit-flipping action should flip the value of all the elements of
the guessed error ê which do not match e. Recalling that ê is initialized to the
null vector, the first iteration of the Q-decoder should thus flip all the elements
êz such that ez = 1.

The Q-decoder will perform all and only the appropriate flips if the upcz
with z ∈ {0, . . . , n − 1} such that ez = 1, match or exceed the threshold b, and
all the upcz such that ez = 0 are below the same flipping threshold.
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We have that, if the highest value of upcz when ez=0 (i.e., max_upcno flip )
is smaller than the lowest value of upcz when ez=1 (i.e., min_upcflip ), the Q-
decoder will be able to correct all the errors in a single iteration if the bit-flipping
threshold b is set to b = min_upcflip, as this will cause the flipping of all and
only the incorrectly estimated bits in the guessed error vector ê.

In the following, we derive an upper bound on the maximum admissible
number of errors t which guarantees that max_upcno flip < min_upcflip for a
given code.

Theorem 1. Let H be an r×n parity-check matrix, with constant column weight
equal to dv, and let Q be an n× n matrix with constant row weight equal to m.
Let e be a 1 × n binary error vector with weight t, composed as e =

∑
i∈I ui,

I ⊂ {0, . . . , n− 1}, |I| = t where ui ∈ Zn2 , and wt(ui) = 1; and let e be the 1× n
binary vector computed as e =

(
QeT

)T . The first iteration of the Q-decoder,
taking as input the 1 × r syndrome s = (HeT )T , retrieves the values of all the
bits of actual error vector e if t < α+β

γ+β , where

α = min
z∈I

{
wt

(
P(z)

(
e(z)

)T)}
, β = max

z,i∈I
z 6=i

{
wt

(
P(z)

(
e(z)

)T
∧ P(z)

(
e(i)
)T)}

γ = max
z,i∈I
z 6=i

{
wt

(
P(z)

(
e(i)
)T)}

.

Proof. We first determine the lower bound min_upcflip as the lowest value of
an unsatisfied parity-check count upcz, z ∈ {0, . . . , n− 1}, when the value of the
corresponding bit in the actual error vector is set, i.e. ez = 1.
We start by decomposing the value of upcz into the contributions provided by
the t vectors ui ∈ Zn2 , with i ∈ {0, . . . , n− 1} and wt(ui) = 1, i.e., e =

∑
i∈I ui,

I ⊂ {0, . . . , n − 1}, |I| = t, keeping into account that z ∈ I, i.e., uz contribute
to the error vector e as we want to quantify the minimum value for the count
of the unsatisfied parity checks related to a bit of the guessed error vector that
need to be flipped when it is right to do so.

upcz = wt
(
P(z) e

T
)

= wt

P(z)

(
e(z)

)T
⊕

⊕
e(i)=(QuTi )

T

ui∈U\{uz}

P(z)

(
e(i)
)T
 .

Considering that, for a generic pair of binary vectors a, b of length n we have that
wt(a ⊕ b) = wt(a) + wt(b) − 2wt(a ∧ b), where ∧ indicates the component-wise
binary product (i.e., the Boolean and), we expand the former onto
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upcz = wt

(
P(z)

(
e(z)

)T)
+

+ wt

 ⊕
e(i)=(QuTi )

T

ui∈U\{uz}

P(z)

(
e(i)
)T
+

− 2 wt

P(z)

(
e(z)

)T∧ ⊕
e(i)=(QuTi )

T

ui∈U\{uz}

P(z)

(
e(i)
)T
 .

Recalling that, for two binary vectors a, b it holds that wt(b) ≥ wt(a ∧ b), it is
worth noting that it also holds that wt(a)+wt(b)−2wt(a∧b) ≥ wt(a)−wt(a∧b).
Therefore, considering the second and third addend of the above equality on
upcz, we obtain

upcz ≥ wt
(
P(z)

(
e(z)

)T)
− wt

P(z)

(
e(z)

)T∧ ⊕
e(i)=(QuTi )

T

ui∈U\{uz}

P(z)

(
e(i)
)T
 .

Since we are interested in quantifying the lower bound min_upcflip for upcz, a
straightforward rewriting of the previous inequality is as follows:

upcz ≥ min
z∈I

{
wt

(
P(z)

(
e(z)

)T)}
+

− max
z,i∈I
z 6=i

wt
P(z)

(
e(z)

)T∧ ⊕
e(i)=(QuTi )

T

ui∈U\{uz}

P(z)

(
e(i)
)T

 .

Considering the second addend, a coarser upper bound to the argument of the
max{...} operator can be derived observing that, given three binary vectors
a, b, c, wt (c ∧ (a⊕ b)) ≤ wt (c ∧ (a ∨ b)) = wt ((c ∧ a) ∨ (c ∧ b)). Thus, the sec-
ond added in the previous inequality can be replaced by the following quantity:

max
z,i∈I
z 6=i

wt
 ∨

(e(i))=(QuTi )
T

ui∈U\{uz}

(
P(z)

(
e(z)

)T∧
P(z)

(
e(i)
)T)




which can be further upper bounded (noting that |U \ {uz}| = t− 1) as:

(t− 1) max
z,i∈I
z 6=i

{
wt

(
P(z)

(
e(z)

)T∧
P(z)

(
e(i)
)T)}
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Looking at the original equality set to compute the value of upcz, it holds that:

upcz ≥ min
z∈I

{
wt

(
P(z)

(
e(z)

)T)}
+

− (t− 1) max
z,i∈I
z 6=i

{
wt

(
P(z)

(
e(z)

)T∧
P(z)

(
e(i)
)T)}

Therefore, it is easy to acknowledge that

min_upcflip ≥ α− (t− 1)β.

In the following we determine max_upcno flip as the highest value of an un-
satisfied parity-check count upcz, z ∈ {0, . . . , n − 1}, when the value of the
corresponding bit in the actual error vector is unset, i.e. ez = 0.
In this case we aim at computing an upper bound for upcz, considering that
that uz /∈ U (and thus z 6∈ I).

upcz = wt

 ⊕
e(i)=(QuTi )

T

ui∈U

P(z)

(
e(i)
)T
 ≤ t max

z,i∈I

{
wt

(
P(z)

(
e(i)
)T)}

= tγ

We can therefore employ tγ as an upper bound for the value of max_upcno flip .
Recalling that the Q-decoder procedure will retrieve all the values of the

error vector e in a single iteration if max_upcno flip < min_upcflip and the
bit-flipping threshold b is such that b = min_upcflip, it is easy to acknowledge
that the maximum number of errors tolerable by the code is constrained by the
following inequality:

tγ < α− (t− 1)β ⇒ t <
α+ β

γ + β
.

ut

6.2 Probabilistic Analysis of the First Iteration of the Q-Decoder

In the following, we model the number of differences between the guessed error
vector, ê, provided as output of the first iteration of the Q-decoder, and the
actual error vector e, as a random variable T over the discrete domain of integers
{0, . . . , t}, t ≥ 0 having a probability mass function Pr [T = τ ], τ = wt (ê∗ ⊕ e)
depending on the decoding strategy and the LDPC code parameters.

To quantify the said probability we consider the decoding procedure em-
ployed by the LEDA cryptosystems assuming that Lemma 1 holds. Given the
equivalence of the BF decoder and Q-decoder provided by the said Lemma, for
the sake of simplicity, we will reason on the application of one iteration of the
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BF decoder taking as input the r × n parity-check matrix H ′ = HQ (assumed
to be computed as a cancellation-free product between H and Q), the 1 × n
syndrome s = (H ′ êT )T , and a null guessed error vector ê = 01×n. The code is
assumed to be an LDPC as the ones employed by the LEDA cryptosystem thus,
r = (n0 − 1)p, n = n0p, p a prime number, n0 ∈ {2, 3, 4}, while m denotes the
number of non-null entries in each row/column of the n×n matrix Q, and dv n0
denotes the number of non-null entries in each row/column of the r × n matrix
H. As a consequence, each row/column of the parity-check matrix H ′ exhibits
d′c = dv n0m non-null entries. This implies that each parity-check equation (i.e.,
row) of H ′ involves d′c variables of the guessed error vector ê.

The quantification of the probability to observe a certain number differences
between the guessed error vector provided as output of the first iteration of the
decoder and the actual error vector can be evaluated considering the number
of correctly and wrongly flipped bits after the first iteration of the decoding
algorithm. In turn, each of these numbers, can be quantified reasoning on the
following probabilities pcorrect−unsatisfied and pincorrect−unsatisfied.

The joint probability pcorrect−unsatisfied = Pr [êj = ej = 0, hij = 1, si = 1]
can be stated as the likelihood of occurrence of the following events:

– {êj = ej = 0} refers to the event describing the j-th bit of the guessed error
vector that does not need to be flipped;

– {hij = 1, si = 1} refers to the event describing the i-th parity-check equation
(i.e., H ′i) that is unsatisfied (i.e., si = 1) when the j-th variable in ê (i.e.,
êj) is included it.

It is easy to acknowledge that the said events occur if an odd number of the
t asserted bits in the unknown error vector are involved in d′c − 1 parity-check
equations, thus:

pcorrect−unsatisfied =

min[d′c−1,t]∑
j = 1, j odd

(
d′c−1
j

)(
n−d′c
t−j

)(
n−1
t

)
An analogous line of reasoning allows to quantify also the joint probability
pincorrect−unsatisfied = Pr [êi 6= ei, hij = 1, si = 1], which can be stated as the
likelihood of occurrence of the following events:

– {êj 6= ej} refers to the event describing the j-th bit of the guessed error
vector that need to be flipped;

– {hij = 1, si = 1} refers to the event describing the i-th parity-check equation
(i.e., H ′i) that is unsatisfied (i.e., si = 1) when the j-th variable in ê (i.e.,
êj) is included it.

pincorrect−unsatisfied =

min[d′c−1,t−1]∑
j = 0, j even

(
d′c−1
j

)(
n−d′c
t−j−1

)(
n−1
t−1
)
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The probability pcorrect that the upc based estimation deems rightfully a given
êj 6= ej in need of flipping can be quantified as the probability that upc ≥ b, i.e.:

pcorrect =

d′v∑
j=b

(
d′v
j

)
pincorrect−unsatisfied

j (1− pincorrect−unsatisfied)
d′v−j .

Analogously, we define the probability pinduce as the probability that the upc

based estimation deems a given êj = ej as (wrongly) in need of flipping as:

pinduce =

d′v∑
j=b

(
d′v
j

)
pcorrect−unsatisfied

j (1− pcorrect−unsatisfied)
d′v−j .

Note that pcorrect is indeed the probability that the Q-decoder performs a correct
flip at the first iteration, while pinduce is the one of performing a wrong flip.

Thus, the probabilities of the Q-decoder performing c ∈ {0, . . . , t} correct
flips out of t or w ∈ {0, . . . , t} wrong flips out of t can be quantified introducing
the random variables fc and fw, as follows:

Pr [fcorrect = c] =

(
t

c

)
pcorrect

c (1− pcorrect)
t−c

Pr
[
fwrong = w

]
=

(
n− t
w

)
pinduce

w (1− pinduce)
n−t−w

.

Assuming that the decision on whether a given value êj in ê should be flipped
or not are taken independently, i.e.,

Pr
[
fcorrect = c, fwrong = w

]
= Pr [fcorrect = c] · Pr

[
fwrong = w

]
,

we obtain the probability that the guessed error vector ê, at the end of the
computation of the first iteration of the Q-decoder, differs from the actual error
vector in τ ∈ {0, . . . , t} positions as follows:

Pr [T = τ ] =

t∑
i=t−τ

Pr [fcorrect = i] · Pr
[
fwrong = τ + i− t

]
.

This results allows us to estimate the probability of having a given number of
errors τ ∈ {0, . . . , t} left to be corrected after the first iteration of the Q-decoder,
since in this case, the hypothesis on the independence of the decisions to flip or
not to flip a given variable can be assumed safely.

6.3 Two iterations Q-decoder with constrained DFR

We now combine the results obtained to obtain a closed form upper bound to
the DFR of a Q-decoder performing two iterations of the decoding action. To
this end, we employ the result derived on the probability that the first iteration
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Table 10. Instances of LEDA cryptosystems with security equivalent to NIST category
1 and 3, achieving DFR < 2−64 with a two iterations Q-decoder for a significant amount
of the randomly selected keypairs.

NIST n0 p t dv m tleft DFR achieving upper bound
Category keys out of 100 on code DFR

1 2 37,501 143 9 [5, 4] 4 85 out of 100 2−64.73

1 2 36,011 143 7 [7, 6] 5 64 out of 100 2−64.55

1 2 37,277 143 9 [6, 5] 5 67 out of 100 2−64.24

1 3 27,011 90 13 [3, 2, 2] 3 97 out of 100 2−65.20

1 3 25,013 90 11 [4, 3, 2] 4 85 out of 100 2−64.51

1 3 22,397 90 7 [5, 4, 4] 5 44 out of 100 2−64.50

1 4 21,523 72 13 [2, 2, 2, 1] 3 96 out of 100 2−65.26

1 4 20,029 72 11 [3, 2, 2, 2] 4 62 out of 100 2−64.89

1 4 17,851 72 7 [4, 3, 3, 3] 5 30 out of 100 2−64.09

3 2 64,013 208 13 [5, 4] 4 88 out of 100 2−65.37

3 2 60,107 208 7 [9, 8] 6 31 out of 100 2−76.10

3 3 41,651 129 15 [4, 3, 2] 4 4 out of 100 2−64.29

3 3 37,307 129 9 [7, 4, 4] 6 25 out of 100 2−65.02

3 4 33,851 104 15 [3, 2, 2, 2] 4 95 out of 100 2−66.55

3 4 31,387 104 9 [4, 4, 4, 3] 6 14 out of 100 2−76.11

of a Q-decoder leaves more than t̄ errors to be corrected, combining it with the
bound on the number of errors which can be corrected with null DFR.

In particular, given a desired target DFR, pdfr, we design code parameters
such that the first iteration of a Q-decoder leaves at most t̄ errors with a prob-
ability of 1− pdfr. For the second iteration we pick the flipping threshold of the
Q-decoder as t̄ =

⌊
α+β
γ+β

⌋
. As a consequence of Theorem 1, we know that the

second iteration will correct all the remaining t̄ errors. Noting that the values
of α, β and γ depend only on the H and Q, given a chosen target bound for
the DFR and a set of parameters for the LEDA cryptosystems, we are able to
evaluate the amount of secret keys which allow to reach the desired DFR target.
We note that such a procedure can be integrated in the key generation process
for LEDApkc, where the concern on the DFR is actually meaningful, as opposed
to the ephemeral key based LEDAkem.

We note that the actual DFR is very likely to be lower than the one provided
by our bound. Indeed, while there are no guarantees, is it highly likely that the
Q-decoder will also correct all the remaining errors during the second iteration
in cases where the number exceeds by a small amount the threshold t̄.

We report in Table 10 we have shown some possible choices, by imposing
a DFR smaller than 2−64 and aiming at parameter sets where the probability
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of drawing a random secret key achieving the desired DFR is significant. To
obtain the said parameters, we started from the ones obtained by the automated
parameter optimization procedure and enlarged the length of the circulant block,
picking a target value for the amount of errors tleft which are left not corrected
by the first iteration with a probability smaller than 2−64. Once the parameters
were selected, we drew 100 keypairs at random for each parameter set, and
evaluated how many of them satisfy the inequality t̄ = α+β

γ+β , thus guaranteeing
the correction of the tleft errors during the second Q-decoder iteration.

As it can be seen from the results reported in Table 10, the parameter sets we
determined are able to achieve a DFR ≤ 2−64 enlarging the code size by a factor
ranging from 2× to 3× with respect to the optimal parameters, while keeping
the number of set terms in H and Q equal to the optimal parameter themselves.
The obtained LEDA parametrizations show that it is possible to achieve the
desired DFR discarding an acceptable number of keypairs, given proper tuning
of the parameters. The parameter derivation procedure for bounded DFR code
instances can also be automated, and is expected to provide improvements in
term of flexibility in choosing a fixed code size or keypair rejection rate and
determining optimally the remaining parameters.
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